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Abstract 
Objective: Present a mortality model for more objective quantification and localization in time of 
excess mortality, and analyse the role of covid and vaccines in recent pandemic excesses. 
	 Method: The model is just one equation, M = W*atT. Normal and excess mortality are explicitly 
defined in a generic, non-mechanistic way. Source data is weekly aggregated absolute mortality 
and average outside temperature, both of which are objective, reliable and available worldwide.

	 Twelve parameters represent trends over decades, seasonal/weekly variability, health pressure 
accumulation (HPA) relating to delay between cause and death, frail pool dynamics (FPD) relating 
to lifetime lost/saved (LTL/LTS), and the natural variability (NV) of remaining random mortality 
fluctuations. Bayesian probabilistics and brute-force numerical optimization are used to fit the 
model. Prediction accuracy is explicitly defined and parametrized.

	 Pandemic excesses are examined by integrating determinants of positive covid tests and 
vaccinations. Measured parameters are covid Case Fatality Rate (CFR), Vaccine-dose Fatality 
Rate (VFR), Vaccine Effectivity (VE) against covid mortality, and LTL/LTS by covid and vaccination.


Experiments: Results with 10 EU countries (344M people) and age-stratified datasets in The 
Netherlands (NL) yield a model fit over 2000-2019 with accuracy ca. 1% of yearly mortality. 
Predictions for 2020-2023 have 79% variance reduction compared to the Dutch national baseline. 
Highest all-ages pandemic excess is found in Bulgaria (10σ) and Poland (12σ), while Germany 
(DE) and NL show no significant excess in any pandemic winteryear (July to June). For ages 0-65 
in NL, excess starts in 2020/21, peaks in 2021 (5σ) and remains persistent. FPD predicts mortality 
deficits to match excesses within a year, but none are observed in any country or age group.

	 In NL, covid HPA time is found at 1.8 weeks (w) at 95% confidence interval (1.5-2.2w), 
matching known mean times between positive test and death. Covid FPD time is 23w (16-33w), 
ca. half of temperature’s 44w (33-65w) which represents natural mortality. All-country average VFR 
is 0.13±0.1% death/dose, while VE starts at ca. 100% and wanes in months to a year, matching 
existing studies. VFR is 0.09% (0.06-0.15%) for NL and 0.22% (0.12-0.41%) for DE. Dose-to-
death HPA time ranges from months to years, while FPD time ranges up to decades, an order 
above temperature’s. Considerable loss of lifeyears is measured due to vaccination in all countries 
examined. In DE, LTL is 450-4600ky (kiloyear) and in NL 50-500ky. Age-stratified NL results are 
13-94ky (ages 0-65), 16-65ky (ages 65-80) and 5-34ky (ages 80+).

	 Conclusions: Mortality predictions and excess measurements by the proposed model are 
considerably more accurate than those of the national baseline. Despite low reliability of 
pandemic determinants, many results are significant and in line with other recent findings. The 
pandemic health pressure is found to be fully persisting throughout 2020-2023, while covid 
targets much frailer people than natural causes do, and vaccine fatal events target younger and 
healthier people. Measured lifetime lost to vaccinations is of the same order as lifetime saved.


The new model is highly promising for generic mortality prediction. It is very different from the 
state of the art and many options for further research are outlined. A disturbing relation is found 
between vaccinations and the persisting excess mortality among the young and healthy 
population, warranting more research in vaccine safety.
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or rodotti.nl/support. It is highly appreciated, every bit helps, thank you! Enjoy the report.


1. Introduction 
In recent years, many countries around the world reported substantial excess mortality of 
unknown cause. An essential step in finding the cause is to quantify excess mortality accurately in 
the first place. Excess is defined as observed mortality minus expected mortality, and the latter 
depends on models that predict mortality based on various kinds of knowledge and data. National 
institutes typically provide a yearly mortality prediction, the “baseline”, based on statistics of 
observed mortality in a few past years [Cbs1,Cbs3,Riv1,Riv3], aided by long-term models [Sto] 
that involve state and expected evolution of e.g. demographics, economy, healthcare, etc. A 
major issue with baselines is that they are highly subjective [Lev]. Searching for more objectivity, 
practical guidelines are model simplicity, explicitness and data objectivity.

	 The most powerful models of Nature are remarkably simple ( , , , 
etc). Mortality models appear generally quite complex, e.g. [Sto] and [Kuh]. The latter uses 
detailed models based on population tables, longevity trends, etc, and finds substantial excess 
deaths in Germany during 2020-2022. Complexity is no guarantee for accuracy, however, as 
variance among nine candidate long-term-mortality models was of the same magnitude as the 
significance level of excess predicted by the chosen model. On the other hand, the used linear 
trends may have been too simple, resulting in superficial trend breaks and excess mortality. Both 
disappear with the use of a quadratic trend, see Figure 1.




Figure 1: Long-term mortality dynamics in Germany. The blue 10-year linear trend suggests a 
trend-break near 2007 and substantial excess starting 2020. The black 20-year quadratic trend fits 
better and predicts no breaks or excesses. A full 23-year quadratic trend fits even better. 

F = ma E = mc2 G = 8πT
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Source data varies tremendously in objectivity. Mortality is one of the most objective; death can 
be determined by anyone, is integer-countable, and such counts are publicly available on various 
aggregation levels (sub/super national) at weekly time resolution nearly everywhere in the world. 
On the other hand, death causes are far more subjective; e.g. accidental-falls, sudden-deaths and 
respiratory failure typically involve a long and partially hidden causal chain. The cause named 
“covid” exists in a context of influenza-like symptoms, mass testing, and novel treatment 
protocols that are non-default in both use and withholding of early treatment, respiratory 
supressants, antibiotics, mechanical ventilation, etc.

	 Publicly reported covid case numbers are among the least objective data, involving testing 
policies, public test-preparedness, complex chemical/biological processes, and decision models 
that transform analog curves into binary outcomes. Vaccine doses given over time may seem as 
objective as mortality, but doses were not always counted well, e.g. due to haste and privacy 
issues. Also vaccine contents varied not only by design per campaign, but apparently also by 
batch [Sch]. Demography also seems as objective as mortality, but recent population counts in 
the UK were so inaccurate as to strongly bias vaccine effectivity (VE) measurements [Nei1]. 
Further, demographic data typically has lower time resolution than mortality. Their combined use 
for e.g. population-relative mortality may require temporal interpolation, leading to accuracy loss.

	 My recent study to improve mortality models [Red4] found that in all of 30 EU countries 
investigated, mortality had much stronger weekly variability than suggested by the default 
Poisson model [Poi] which predicts variability equal to the square root of average mortality. This 
effect accumulates at other timescales, e.g. Germany’s yearly-average mortality of ~1M people 
has an associated Poisson variability of ±1k, while ca ±15k is observed, see Figure 1. A strong 
population-wide, correlated influence on mortality appears to act on weekly basis, manifesting as 
increased variance at all time scales. The factor 15 requires that mortality is correlated within 
groups of hundreds of people for all deaths. There is no evidence that big families or all residents 
in care-homes always die together. Broken-heart-syndrome causes couples to die quickly after 
another [Moo], but even if this occurs for all couples, this only explains a factor √2 ≈ 1.4.

	 Temperature was suggested in [Red4] as cause of mortality correlation, since it is the main 
element in seasonal and heat-wave mortality, varies strongly on daily basis, and affects mortality 
within 0-3 days in the case of extreme heat [Xia]. Figure 2 shows a preliminary result: absolute all-
cause-mortality (ACM) correlates very strongly with average outside temperature. Temperature 
plays a role in various causal chains, e.g. sunlight to temperature, sun UV light to vitamin D to 
immunity, UV light to ozone via ventilation to indoor-desinfection and air purifying, cold bad 
weather to slippery roads to accidental deadly falls, etc. Relative humidity (RH) influences viral 
transmission of influenza [Low], and maybe also of common colds and endemic covid. The role of 
absolute humidity seems to be that it determines indoor RH [Mar1] together with temperature.




Figure 2: A preliminary result motivating this report. Weekly absolute mortality in The Netherlands 
correlates strongly with average outside temperature according to a quadratic model. 
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Temperature data has the strong advantage that it is highly objective and publicly available nearly 
everywhere in the world at high temporal and regional resolution. The correlation with mortality 
appears simply quadratic as in Figure 2, with minimum mortality occurring at ca 16.5  °C. This 
value appeared also in the context of the Dutch national baseline, but there a linear increase of 
mortality was used and only above that temperature [Cbs3], thereby missing the major mortality 
component on the cold side.

	 Age data, used in population tables, may be very objective but its relevance is limited to being 
a proxy for health. While health is more relevant, its data is generally subjective, unavailable, or 
inaccessable due to privacy issues. Searching for a way to combine the objectivity of age with the 
relevance of health, the concept of frailty may be useful. Based on Dutch population tables 
[Cbs2], age at death is ca. 80±11 years in The Netherlands. According to [Ger], after a healthy 
adult life, the time between onset of final health decline and death is only 4±1 years, a remarkably 
stable period hinting at a hardwired biological origin. I coin the population whose frailty is related 
to the final phase of life as the “frail pool”. This pool is the direct source of natural mortality, and is 
much more confined by health (4 frail years out of 80 total years, 5% of population) than by age 
(2x11 out of 80 years, ca 28%).

	 Figure 3 illustrates the frail pool by what I coin as “frail age”, which is zero when entering the 
frail pool. Modeling health via frail age may narrow down uncertainties in mortality. With normal 
age, birth variability resides in health but not age, while death varies strongly in age but not health. 
With frail age, these uncertainties are redistributed to concentrate at births, while deaths only 
include the minor uncertainties in frail age. Note that “reverse age”, normal age minus age at 
death, removes all mortal uncertainty which may be of similar use.




Figure 3: Modeling health via “frail age”. After spending a healthy life of greatly varying duration, 
people transition to the “frail pool”: ca 5% of the population with various normal ages. The 
duration of frail life until death is highly constrained to 4±1 years. 

A generic advantage of frail age is that it is independent of normal age; it applies to entire 
populations, subpopulations by age, and stratifications by any modality other than health. Further, 
in between birth and death, migration influences population tables. This happens mainly during 
healthy life, and thus hardly affects the frail pool. Remigration in the frail does occur, but it 
effectively only cancels prior emigration.

	 Even without access to individuals’ health data, some population-wide aspects of the frail pool 
may be modeled, estimated from observed mortality, and advantageously used. Relevant for this 
report are mortality deficits after excesses or vice versa and their time lag. The latter enables to 
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derive lifetime lost/saved, which is much more relevant than death counts. Disease and treatment 
may accelerate or postpone death, but always have zero net effect on counts over the long term.

	 Ideally, lifetime lost/saved is adjusted for quality, represented by wellknown quality-adjusted 
life-years (QALYs). Quality of life and health are strongly intertwined, and health depends much 
stronger on remaining lifetime (reverse or frail age) than on enjoyed lifetime (normal age). So by 
nature, the frail age method relates to quality automatically according to the curve in Figure 3 for 
positive frail ages.

	 A special challenge for mortality models used for excess measurements is that they must 
predict not all mortality, but only part of it: normal, expected mortality. Without special care, one 
cannot fit a model and evaluate its predictions by a simple numerical difference measure with 
respect to observed mortality in fit and prediction periods. Observations reflect all mortality, 
possibly including abnormal, unexpected events. For this reason, one must explicitly define what 
is normal, such that model fit periods can be selected representative of that normal, or such that 
models can be defined that are insensitive to certain classes of abnormal events. An example of 
the latter is a linear model fitted to observed mortality that inevitably does include some abnormal 
events, where most of those events are zero-sum: an excess is followed some time later by an 
equal deficit still within the analysis period. The longer the analysis period, the more unexpected 
events are accounted for automatically; an argument for long-term analyses as in Figure 1.

	 A relaxed property of mortality models used for excess measurements is that forecasting is not 
needed. National baselines are used a.o. to prepare for future demographic developments, where 
forecasting is essential. Excess mortality on the other hand exists by definition in the present and 
past only. The required prediction is not across time, from known past to unknown future, but only 
across causes, predicting the expected to quantify the unexpected and localize it in time. 
Recently, several such excess mortality analyses have been made that are independent of existing 
national baselines and do not aim at forecasting, attempting to reduce subjectivity. In [Red1], a 
geographical-differential analysis was used, while [Red2,Red3] used a temporal-differential 
analysis effectively defining a baseline via a period around a moment in the past. In [Mee], a fixed 
baseline was estimated and used within the same analysis time frame.

	 This report’s main contribution is a new mortality model, with the following features:


• Mathematically simple, one single equation

• Fits decades of data without trend breaks

• Predicts several years of data at week, month, seasonal and year resolution

• Just 12 parameters, 9-parameter version fittable by default linear regression

• Uses only temperature and absolute mortality data: objective, accurate and widely available

• No population or age data required, but population-relative mortality can be used as well

• Includes frail pool dynamics (FPD)

• Includes delayed mortality by so-called health pressure accumulation (HPA)

• Includes explicit modeling of mortality’s observed natural random variability

• Embedded in the Bayesian probability framework

• Explicitly modeled and measured prediction accuracy

• Ideal for time-localized quantification of excess mortality

• More accurate than national baselines for this purpose 
• Easily integrates determinants for possible causes of abnormal/excess mortality

• Specially suited to determine lost/saved lifetime per cause


The model can be used with population-relative mortality, but this requires additional population 
data and may not improve results in general due to migration, data (interpolation) errors, etc. 
Improved results are only expected in special cases, e.g. when both mortality and population are 
affected by the same type of disruptive dynamics. This may apply to age-limited analyses during 
recent years of accelerated migration in the EU.
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	 The model’s typical use is to predict “normal” mortality by temperature during a period in the 
past, and if abnormal excesses are encountered when compared to observed mortality, explicit 
determinants of possible causes are integrated to investigate their contribution. The model’s 
forecasting power for future mortality depends on temperature forecasts. While beyond the scope 
of this report, Figure 2 suggests global warming will reduce mortality in The Netherlands.

	 As this report’s secondary contribution, the model will be applied to the recent pandemic, to 
measure excess mortality and covid Case Fatality Rate (CFR), Vaccine-dose Fatality Rate (VFR), 
Vaccine Effectivity (VE), and lifetime lost/saved (LTL/LTS) by covid and vaccines. Positive covid 
tests and vaccination doses administered are used as determinants, both of which are 
unfortunately considerably less objective than temperature. Stringency indices (SI) of non-
pharmaceutical interventions (NPIs) are not included.

	 Next follow the proposed mortality model, experiments, and a conclusion. The experiments 
involve years 2000-2023 and populations of 10 EU countries Belgium (BE), Bulgaria (BG), Finland 
(FI), France (FR), Germany (DE), Italy (IT), The Netherlands (NL), Poland (PL), Spain (ES) and 
Sweden (SE), totalling ca. 344M people. The model is assessed by fit/prediction errors and visual 
inspection. A comparison with the Dutch national baseline [Cbs1,Cb2] is made and experiments 
are performed with population-relative mortality and age stratification. Finally, the model is applied 
to the recent pandemic. 

	 At many occasions, I will use results from preliminary experiments to shortcut possible routes 
of investigation. Figure 4 provides a preview of the model’s results, which may provide some 
incentive to you as reader to plough through the many pages of this report.




Figure 4: Result previews. Germany) Prepandemic to pandemic prediction shows near-zero excess 
during the entire pandemic, except for 2022. The Netherlands) Pandemic model fit with covid-test 
and vaccine-dose determinants. 

2. Mortality model 
In the next subsections I propose the normal mortality model, starting with a fast lane to the full 
model, followed by an overview, all details, various considerations, model optimization and 
assessment, and the use of other determinants that can be integrated in the model. Finally, the 
pandemic model is presented.


2.1 Fast lane to the full model 
According to the preliminary result in Figure 1, the overall trend of mortality  over decades of 
time  is well-described by a quadratic relation . According to the preliminary 
result in Figure 2, weekly mortality is highly correlated with temperature  by . 
The strong resemblance between these two equations is remarkable, totally meaningless, and 
useful for their integration. Each of the three constants in the temperature model will be replaced 
by a 3-parameter time-trend via . The  is a 3x3 matrix that contains 9 model 

parameters, 5 for long-term time trend via  and weekly variability by temperature via , plus 4 
additional cross-terms. The matrix can be estimated by default linear regression. To declutter 
equations, I will leave out time dependence (t) whenever possible, and use Einstein’s summation 
convention: indices repeated in a product are to be summed over.


M(t)
t M = a + bt + ct2

T M = a + bT + cT 2

M = aijtiT j aij

ai0 a0j
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	 Health pressure accumulation (HPA) and Frail pool dynamics (FPD) are implemented via a linear 
filter  parametrized by two time constants , . These represent mean time between 
health pressure and death, and between excess mortality and subsequent deficit, respectively. 
The filter  is applied via temporal convolution denoted by the asterisk operator  (with 
precedence in between multiplication and addition). Finally, unexpected mortality is denoted by 

, consisting of two very different components: normal weekly fluctuations with expected 
statistical characteristics parameterized by strength parameter , plus all remaining excess by 
abnormalities still unaccounted for. Together, the final model equation is adopted as:


	 (“M is Watt”)


where  is “no filter” (“do not filter long-term trend”) and  (apply HPA/FPD filter on  

and ). I like the aesthetics of the above formula, but will make use of less condensed notation 
in the following that is easier to read and manipulate, including normal equation numbers.


2.2 Normal and abnormal mortality 
Figure 5 shows the model’s main ingredients that determine what is normal mortality, and what 
not. At the top is the natural process of life in the current civilized world: people are born, live their 
healthy lives with varying duration, transition to frailty and live just a few years until what is 
considered normal death. The timespans in years are illustrative and may differ per population. At 
the bottom are three categories of influences on health affecting births, life and deaths. The listed 
examples per category are illustrative and by no means exhaustive; in the model no mechanisms 
will be explicitly modeled, only their combined overall effect.




Figure 5: Overview of the mortality model. 

Disruptive events may prevent births and cause mortality among all people, including the healthy, 
skipping the frail phase. On the other hand, they may also prevent mortality substantially. These 
events are not modeled, are unexpected/abnormal, and will thus appear as excess/deficit 
mortality when model predictions are compared with observed mortality. Disruptive events may 
include scientific breakthoughs in health care, war, population-wide exposure to new pathogens 
(pandemic) or toxic substances (bioweapon), and other kinds of sudden large-scale events. 

	 Long-term developments act strongly but slowly over timescales of several decades, affecting  
birth rates and the lifetimes of the healthy. They define the number of people available to turn frail, 
the “frail rate”. But, long-term developments do not affect the frail, as frail people’s health decline 
is very fast and dominated by their frail internal biology.

	 Short-term events act strongly and instantly, up to time scales of weeks, months, a few years 
at most. These events have a strong impact on the frail, while the healthy have sufficient health 

W τHPA τFPD

W *

ΔM
α

M = Wj * aijtiT j + ΔM

W0 W1,2 = W T
T 2
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overhead to withstand or recover from such events. In this report, temperature serves as 
predictor, or proxy, of all short-term “events”. Later in this report, explicit pandemic determinants 
will be added to the model, such that the pandemic is changed from an unexpected disruptive 
event into a series of expected short-term events. 

	 Phenomena or their characteristics may be part of multiple categories. For example, accidental 
falls leading to death are a generic, expected and statistically significant part of frail life. These are 
short-term events in a personal sense, while their overall rate in the population has long-term 
dynamics. Further, deadly falls do occur among the healthy, albeit via more disruptive events (high 
altitude or speed falls) and at a much lower rate.

	 The frail-age approach does not exclude age-stratified analysis. On the contrary, it is fully 
compatible as mortality expectations by frailty apply equally well to young populations. The use of 
age stratification is the same as with other approaches. For example, if the deadly-falls rate 
among the healthy suddenly doubles, this is a highly significant event. It may go unnoticed in an 
all-age analysis but would stand out in an age-limited analysis (e.g. up to 65). To accomodate an 
age-limit, Figure 5’s healthy and frail life would have extra output arrows “still healthy at age-limit” 
and “still alive at age-limit” respectively; these people exit the model alive. Such arrows and 
people are not shown in Figure 5; they are not needed in any of the following.

	 The transition from healthy to frail is not unlike crossing a black hole’s event horizon: nothing 
particular happens at that moment other than losing the option of return. A clear definition of the 
transition to frailty would be subjective and hard to give, e.g. “so many stem cells per liter of 
blood”, but luckily that is not required. If frail life endures for  years, the definition of frailty 
onset defines , and this  disappears from the model as shown next.


2.3 Births, frailty and zero-sum variability 
Mortality rates may vary over time, but over great time scales they equal birth rates on average. 
Ignoring migration for the moment, the whole life process is always zero-sum: no development, 
event, or medical intervention can cost or save lives, it can only accelerate or postpone death. On 
time scales of centuries, births are therefore an objective and accurate predictor of mortality:


	 (1)


	 Time (at century resolution)

	 Absolute mortality rate (e.g. deaths per century, averaged over a few centuries)

	 Similar for birth rate, whose delayed values serve as mortality prediction


	 Random zero-sum fluctuations, all unexpected as only births are used for prediction

80 years	 Average human life time (may depend on time epoch, region, culture, etc)


A key point in my model is to apply the same zero-sum argument to the frail and the dead. I start 
the model at the frail transition, skipping births and healthy life altogether, while increasing time 
resolution to week level and introducing expected short-term mortality fluctuations:


	 (2)


μ ± σ
μ μ

M(t) = B(t − 80 years) + ΔM(t)

t
M(t)
B(t)
ΔM(t)

M(t) = F(t − μ) + ΔMshort−term(t) + ΔM(t)
= Mlong−term(t) + ΔMshort−term(t) + ΔM(t)
= Mlong−term(t) + {W * H}(t) + ΔM(t)
= Mexpected(t) + ΔM(t)
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	 Time (at week resolution)

	 Frail rate, the rate of people transitioning from healthy to frail

	 Expected lifetime of the frail, in frail age, ca 4±1 years


	 Expected mortality fluctuations on short-term (zero-sum like )

	 Timeshifted version of frail rate , with shift by average frail lifetime 


	 All normal mortality expected by the model


	 Instantaneous health pressure on the frail by short-term events

	 Health Pressure Accumulation (HPA) and Frail Pool Dynamics (FPD) filter

	 All remaining fluctuations, zero-sum on various time scales


The timeshift between definitions of  and  cancels  in (2); one does not have to 
define where healthy life ends and frailty starts.

	 While short-term temporal fluctuations in births  do get imprinted in and travel through 
population tables over time, they do not end up in frail rate  or  significantly. The 
variations in people’s healthy lifetime (ca ±11 years) effectively smooth out any birth fluctuations, 
as a sort of information shredder. Therefore,  is a very smooth function of time, with 
variations only over multiple decades due to long-term developments.

	 Immigration and emigration take place for the major part during healthy life. Although they may 
not be zero-sum (unless world population is considered), their short-term dynamics also do not 
reach  significantly. Remigration may take place more commonly among the frail, but 
this only cancels some of the prior emigration.


2.4 Long-term developments 
As  is a highly-smooth function over time, it can be easily parametrized over several 

decades. I bluntly choose to model this smoothness as having at most one extremum per  
years, more or less matching the time scale of healthy life’s variability (±11y). A full-cycle up/
down/back-to-base wave would thus have a duration of at least  years. For any analysis 
up to  years, a parabola will then be sufficient to parametrize . For every additional 

set of  years, a polynomial of one degree higher would be required.

	 This long-term model states that mortality rates are effectively independent/decoupled across 
periods of  years. Therefore, taking into account more than  years is not recommended in this 
model as it would not add to prediction accuracy. In this report, all analyses cover years 
2000-2023, and a parabola suffices:


	 (3)


	 Time in weeks (arbitrary unit)

	 Three arbitrary constants (  are the same with index notation)


In light of all of the above, this model is not overly restrictive or mathematical. It models the 
combined effect of all long-term developments, rather than a specific set of known mechanisms, 
by a function whose degrees of freedom match those of all underlying mechanisms combined. At 

t
F(t)
μ ± σ
ΔMshort−term(t) ΔM
Mlong−term(t) F μ
Mexpected(t)
H(t)
W(Δt)
ΔM(t)

F Mlong−term μ

B(t)
F Mlong−term

Mlong−term(t)

Mlong−term

Mlong−term(t)
L = 25

2L = 50
L Mlong−term(t)
L

L L

Mlong−term = a + bt + ct2 = aiti

t
a, b, c a0, a1, a2
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this point, the  can be easily estimated using linear regression methods via (2) with 
observed mortality and the fact that both  and  are zero on average.

	 In the experimental section, the polynomial order of time denoted by  will be investigated, to 
see if 2 is in fact optimal.


2.5 Short-term events 
In this model, short-term events such as heat or disease waves create an instantaneous health 
pressure  on the frail, which indirectly (via HPA and FPD) determines expected mortality 
fluctuations  in (2). The instantaneous health pressure model is based only on a 
polynomial of temperature, e.g. quadratic , a highly limited model but motivated in 
the introduction.

	 As FPD will filter all long-term components out of  causing  to be zero-sum, the 
constant  is irrelevant and can be omitted. Long-term dynamics will affect remaining “constants” 

 and . Modeling them each by a long-term parabolic trend over time, justified by the same 
argument as for (3), one obtains:


	 (4)


	 Health pressure (or hazard, etc), unit/scale is implicit via (2) and 

	 Six arbitrary constants

	 Average weekly temperature, unit is irrelevant and absorbed by 


In the experimental section, the polynomial order of temperature denoted by  will be 
investigated, together with .


2.6 Health pressure accumulation (HPA) 
Health pressure does not always lead to instant mortality, but may acculate over a few weeks, 
leading to delayed mortality. A simple model for such accumulation is by temporal convolution:


	 (5)


	 Accumulated health pressure

	Relative weight of health pressure  weeks ago in accumulated health pressure


The overall scale of weights  is arbitrary; I choose them normalized to unit-sum so  has 
the same scale as .

	 In preliminary experiments, I used brute-force numerical algorithms to optimize . Figure 6 
shows model fit error (precise definition is not relevant here) as a function of number of weights. 
The weights were freely optimized without any inter-weight restrictions. Results show that the 
accumulation acts within a range up to ca 1 month in the past. Note that future temperatures also 
correlate with current mortality; the weather system causes this as a confounder, and theoretically 
cremations are a true cause. Adding weights for future weeks did not reduce model error, 
however, once current and past weeks were already taken into account.


a, b, c
ΔMshort−term ΔM

Ot

H(t)
ΔMshort−term

a + bT + cT 2

H ΔMshort−term

a
b c

H = (biT + ciT 2)ti

H(t) bi, ci

bi, ci

T (t) bi, ci

OT

Ot

HACC(t) = ∑
Δt≥0

WHPA(Δt)H(t − Δt) = {WHPA * H}(t)

HACC(t)
WHPA(Δt) Δt

WHPA HACC

H
WHPA
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Figure 6: Model fit error as a function of number of past weeks taken into account. 

The free weights obtained in multiple experiments were highly variable, as if not fully constrained 
by the model and observational data. This suggests the weights can be constrained without loss 
of model accuracy, e.g. by a parametrization. As Figure 6 suggests exponential decline with time 
passed, I tried:


	 (6)


	 Characteristic time constant of HPA, ca. 1 month


The performance of these weights parametrized by a single constant is nearly identical to that of 
the free weights. This is a so-called 1st order low-pass filter, that can be implemented very 
efficiently without limitation to  (number of weights) via a default FIR/IIR implementation with 
coefficients [1] / [1 , -1+ ] .


	 The  relates directly to average delay between health pressure and death. For temperature 
it is apparently ca. a month. For covid, the time between infection and death (if it occurs) has been 
measured at ca. 18 days [Mar2]; this is the value expected for covid’s HPA time, denoted by 

 in my pandemic model in a following subsection.


2.7 Frail pool dynamics (FPD) 
Mortality rates are influenced by the frail pool’s population size and frail age distribution. The pool 
is filled and emptied at different rates:  and . When  the pool gets depleted over 
time, the current health pressure will be applied on less people and with a better health status, 
leading to less deaths until  again and a new balance is reached.

	 The full dynamics of the frail pool are intricate and non-linear. I approximate this behaviour in 
greatly simplified form using a linear filter , which can be combined with :


	 (7)


	Linear filter representing the frail pool’s fill/depletion dynamics

	 Linear filter combining  and 
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The  has a so-called high-pass characteristic, passing fluctuations but blocking all long-term 
dynamics. This ensures that  is zero-sum, or zero-mean.

	 To determine , I have done brute-force simulations of the frail pool using the canonical 
model for mortality by frail age instead of normal age. The canonical model considers population 
tables  containing the number of people per age  (the population state), and the probability 
rate of mortality by age  (that together with births and aging determine population dynamics). 

The  is known to resemble an exponential curve (growing ca. +13% per year of age). I 

assumed that the frail pool’s mortality rate  is well-represented by this canonical model, 
albeit with a much steeper exponential curve (e.g. +30% per frail year) to match death at frail age 
of 4±1y. I considered various ways in which health pressure adds to , e.g. plain 
multiplicative and/or additive to the age exponent.

	 The details are completely beyond the scope of this report; the main result is that for health 
pressures from mild to considerable, but not disruptive, a simple linear so-called 1st order high-
pass filter describes the frail pool’s simulated behaviour quite well:


	 (8)


	 Delta function, one for , and zero otherwise

	 Characteristic time constant of FPD, ca. 1 year


The first term in  represents excess deaths and the 2nd term the deficits that follow, equal in 
number but stretched out over a time period that is  on average. That is, with each death 
caused by , the net loss is not a life, as lives are never lost, but lifetime of mean duration . 
The same argument holds the other way round: negative excesses are deficits, which will be 
automatically followed by (true, positive) excesses, which in total has a net lifetime saving effect.

	 Similar to , the  filter can be efficiently implemented without limitation to  via a 
default FIR/IIR filter with coefficients [1 , -1] / [1 , -1+ ]. The latter requires 2 IIR 
coefficients, associated with a scalar state algorithm. Therefore, in this linear FPD model, the 
entire frail population’s state at some moment is just one number, e.g. opposed to many numbers 

 in the canonical model. In the IIR implementation, the single state value is not the frail pool’s 
population size but its absolute mortality.

	 Figure 7 illustrates the strong similarity of simulation and the approximation for a fast ramping 
3-year-persistent health pressure and a short burst including seasons. For health pressures in a 
burst/wave, the excess follows health pressure dynamics, while the deficit follows frail pool 
dynamics. A persistent health pressure leads to excess mortality that starts instantaneously, but 
wanes smoothly and silently to zero in just a few years, without any deficit. At all times, mortality 
probability rates remain heightened, and average age at death remains reduced, but absolute 
mortality rates return to normal. Only once the health pressure is released, a mortality deficit 
occurs.

	 Excess figures are often publicly communicated by absolute mortality, or relative to other 
absolute mortality numbers (e.g. baseline or historic) instead of population-size. This feeds the 
false perception that excess is linear with instantaneous health threat: no excess, thus all is fine.
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Figure 7: Brute-force simulation of health pressures in a canonical mortality model applied on frail 
age rather than normal age, and an approximation by a linear filter.  

All of the above findings are not specific to the frail pool: the canonical mortality model applied to 
normal age behaves the same. The main difference is that the frail pool’s dynamics are an order of 
magnitude faster, on time scales of years rather than decades.

	 The only parameter in the frail pool model that relates to the  expected lifetime of the 
frail, is . From here on, no further explicit reference to  is required; their relevant effects 
are fully represented by . In the simulations with  equal to 4±1 year according to [Ger], 
the  was found to be ca. 9-12 months. The  and  in the order of a year suggest some 
relationship with seasons, which is not further explored here.

	 Reality is incredibly more complex than both the canonical and linear FPD model. So it remains 
to be seen if FPD adds to overall model accuracy. Integration of the canonical model requires 
more demanding optimization methods to fit the model, whereas the linear model is more 
forgiving. In this report I only use the linear model.


2.8 Interaction between HPA and FPD 
HPA and FPD are distinct mechanisms with time constants that differ by a considerable factor (ca 
1 month vs 1 year). Yet, their separate actions appear in my model integrated as a single linear 
filter , whose FIR/IIR coefficients are [1 , -1] / ( [1 , -1+ ]  [1 , -1+ ] ). 

The multiplicative constant  is irrelevant as it will get absorbed by parameters . 
Without the constant, the model is symmetrical in HPA and FPD. Exchanging the two time scale 
parameters provides the same combined filter, so any measurement of their separate values can 
only be performed when a prior model is applied, e.g. a model requirement that .

	 Figure 8 shows a preliminary brute-force optimization, where overal model fit error (precise 
definition not relevant here) is given for all , for three datasets. One can 
observe the  symmetry in all cases. The left dataset shows two optimal  
islands at ca. [5,36] and [36,5] weeks, numerically matching findings in the previous sections. This 
is a preliminary validation for the use of the HPA/FPD model.

	 The optimal islands are embedded in a broad somewhat hyperbolic-shaped band consisting of 
near-optimum model-fits. Degenerate cases may arise where HPA and FPD have merged at 

 and can no longer be distinguished, or have diverged towards infinity at  
or  and can no longer be measured. Divergence may relate to (disruptive) events that 
affect all people including the healthy. As the healthy outnumber the frail substantially, they will 
dominate  and increase its value to decades. In the proposed model, expressions with HPA/
FPD always involve inverse time constants  ,  which will just get closer and closer to 

zero. A  of 1000w (~20 years) will easily be indistinguishable from .
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Figure 8: Brute-force model optimization with HPA and FPD time scales . 
Isocontours represent overall model fit error. Left) Typical dataset that enables measurement of 
HPA and FPD. Center/Right) Some datasets lead to degenerate cases where HPA and FPD effects 
cannot be distinguished (merged) or measured (diverged). 

By accepting a possible slight loss of model accuracy, one can choose to incorporate merged 
degeneracy into the model and simplify it to . This  represents the merged 
action of both HPA and FPD, but neither mechanism specifically. The merged filter has FIR/IIR 
components . The hyperbolic band 
describing the relation between the three time constants is well approximated by 

. For the [5,36] result in Figure 8,  is ca 11.

	 Whether degeneracy is an issue or not, depends on multiple factors. While data quality 
obviously has an effect on the model’s ability to fit and predict mortality, HPA/FPD degeneracy 
may not. If one is interested in  values, e.g. for measuring lifetime lost/saved, degeneracy is 
undesired. But if one is uninterested in ,  values, the choice for the full/separate or 
degenerate model should be guided only by fit and prediction accuracies of mortality. If the 
seperate HPA/FPD model is overfitting, model fits are better but predictions worse, and the 
explicitly degenerate model is in fact preferred.

	 In the experimental section, both full and degenerate (merged) HPA/FPD models will be 
evaluated. Out of interest in  values, I concentrate on full rather than degenerate models, and 
handle divergence by estimation of lower bounds.


2.9 Modeling the unexpected: normal random variability and abnormal excesses 
The remaining mortality fluctuations  are modeled with two components:


• “Truly” random, ever-present fluctuations caused by a huge inaccessible chain of events

• Abnormal events, excess mortality by unexpected but in principle accessible causes


The law of great numbers justifies modeling the random part probabilistically with a normal 
distribution, while for the abnormal excesses a something-or-nothing model is used:


	 (9)


	 Normal distributed random variable with mean  and deviation 


	 Expected magnitude (deviation) of normal random mortality fluctuations


	 Abnormal excess mortality: zero, or not


1 ≤ τHPA, τFPD ≤ 50

τHPA = τFPD = τ τ

τ−1(1 − τ−1) ⋅ [1, − 1]/[1, − 2 + 2τ−1,1 − 2τ−1 + τ−2]

τ−1/2
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Both terms are zero-sum, but on vastly different time scales;  yields a process uncorrelated 

over time whose average goes to zero over periods of just several weeks, while  could 
have net effects at considerable time scales. In my model, excesses become “normal” and zero-
sum automatically at time scales of a few  (a few years) if only frail people are affected, or up 
to  (ca 25 years) if also healthy people are affected. This distinction is relevant as it allows to 
determine whether only frail or also healthy people are affected by abnormal mortality.

	 My study on the natural variability of mortality [Red4] found  is well-modeled by:


	 (10)


	 Scale constant for mortality fluctuations that are linear with mortality

	 Time-dependent mortality deviation, changes together with (expected) mortality


The first term in (10) represents wellknown Poisson noise, the 2nd represents an omnipresent but 
sofar not-understood component with 3% for weekly mortality [Red4]. Possibly, the 
proposed temperature model explains part of mortality fluctuations, leading to lower . Higher  
may also be encountered here, as [Red4]’s method to determine  automatically compensated for 
any kind of abnormal mortality lasting a month or longer. In this report, anything-not-predictable-
by-temperature-during-normal-years will add to , such as influenza-winter-variability.

	 Equation (10) is the only part of the model that is taylored towards absolute mortality. When 
mortality relative to population size  is used, one can replace  by  everywhere in the 
model, but (10) changes into , that is, an extra  
divides the first term.

	 The something-or-nothing model for  determines which periods can be used to fit the 
model; clearly those with zero excess (no abnormal mortality) are preferred. Any abnormal event 
outside of the fit period but within a prediction period, can then be detected and quantified by the 
model. By introducing other determinants in the model, ideally some or all of the mortality in 

 is shifted towards .


	 Altogether, modeling the unexpected leads to one extra parameter  that characterizes the 
strength of mortality’s normal or expected randomness.


2.10 Entire model 
The entire model is obtained by combining all previous equations into:


	 (11)


The 12 model parameters ,  and  are a non-mechanistic, generic, approximate and 
incomplete representation of all processes underlying long-term developments, short-term events 
that correlate with temperature or its square, and the randomness of normal mortality. The units of 
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both time and temperature are arbitrary (days, weeks, years, K, °C, °F), as scales and zero-points 
are absorbed by the  and/or filtered out by the FPD filter via .


	 The parameters are categorized in linear (the nine ) and non-linear (the three  and 

). They can be obtained by brute-force numerical methods, and default linear regression under 
some circumstances discussed in the next subsection .


2.11 Bayesian analysis: parameter fit and accuracy 
To fit the model, I follow the Bayesian probability approach that maximizes the posterior 
probability density of all parameters given mortality and temperature observations:


	 (12)


	 All model parameters

	 Parameters fitted to observed mortality and temperature 


	 Posterior probability density of parameters, given observed 


	 Prior probability density of , constant as  are fixed to observed values


	 Prior parameter probability density, constant/uniform on a restricted domain


	 Short-hand for 


	 Probability density of normal mortality deviations, normal distribution by (9)-(10)

	 Constant that absorbed all previous other constants


In (12), I make use of the independence between  and  prior to observing . The argument of 
the  function represents the proposed model (11). The probability  uses   as 
the model is fit on a period of normal mortality. The time product runs over all observed weeks 
selected as fit period, which is in the order of 1000-1250 weeks (20 to 24 years).

	 The constant (uniform) prior parameter probability density  reflects completely free 
parameters, without bias to any sort of prior expectations, albeit with two exceptions. First, 
physical restrictions such as positivity of ,  and , are reflected by zero  if restrictions 
are not met. This is not shown in (12); the restriction is implemented in the maximization by 
searching only within the physically allowed parameter domain. Secondly, to match the inverse 
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nature of HPA/FPD parameters (they always appear in equations as  and ) and handle 
diverged degeneracies properly, these parameters are natively used in inverted way which range 
uniformly between 0 and 1 without any singular behaviour.

	 There is, however, no free lunch: by assigning each  a uniform prior distribution over [0,1], 
each  automatically acquires a non-uniform prior distribution over with density . This 
prior actually reflects sensible expectations that any  is not extreme or infinite, but weeks, years, 
decades at most as it certainly remains below my model’s long-term-developments time scale . 
The bias towards low values by this prior is extremely mild/weak; while  is a valid probality 
density, both its expected value and variance are infinite similar to Cauchy distributions, providing 
ample room for high-valued . Further, the more than 1000 mortality equations (one per week in a 
two-decade analysis) overpower even strong priors very easily.

	 Readers comfortable with probability distributions lacking expected value and variance may 
skip to the next paragraph. For those still here: each linear parameter  in my model has a 

uniform prior distribution over all real numbers, which I coin gamma, . It has an integral equal 
to 1 but is zero everywhere (or  if you wish). This  lacks far more than expectation and 
variance, namely even any non-zero value at all. It is similar to the Dirac delta function , but 
infinitely dispersed instead of concentrated. All models in use worldwide that apply default linear 
regression to obtain parameters are equivalent with Bayesian models that use gamma 
distributions as parameter priors (and normal distributions for all other random variables that must 
relate additively to some function of the observables). Silently, the super-degenerate  is one of 
the most used distributions in the world.

	 A brute-force numerical algorithm is required for the maximization of  to obtain . I use 
a proprietary mix of wellknown methods such as full/stochastic/accelerated search and gradient/
quadratic descent. To determine accuracy of parameters and quantities derived from multiple 
parameters (lifetime lost/saved), I use default Gibbs sampling followed by default statistical 
analysis of the samples. Depending on tail behaviour of , parameter mean , deviation  
and 95% Confidence Intervals (CI), Lower/Upper Bounds (CLB/CUB) are well-defined and can be 
measured. This will be in most cases except when HPA/FPD time constants have diverged; in that 
case at least their CLBs can still be measured.

	 For the prediction of mortality I use , with prediction accuracy determined as in the next 

section. Values of parameters and derived quantities are always presented in terms of ,  and/
or CLB/CUBs.

	 The maximization of (12) and parameter accuracy analysis can also be performed without 
brute-force algorithms, by resorting to default linear regression on the linear parameters only and 
a very acceptable approximation:
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The bottom row is an accurate approximation where all-but-one  are replaced by ; given that 
the proposed model is of any use,  should resemble  up to a few percent. The logarithmic 
term then becomes constant and disappears from the minimization, resulting in a sum of squares 
weighted by . This can be minimized over all  by default weighted linear regression, yielding 

parameter values (  and , these are the same due to the model approximation) and their 

accuracies ( ). Brute force optimization is still required for the non-linear parameters  and the 

’s. These, however, are assumed to be more constant than  over different periods and regions, 
so one can reuse the generic values given in the experimental section.

	 The fit period ideally only contains normal or expected mortality, but is in fact allowed to 
contain some unexpected events on the sufficiently-frail population, as these result in a quick 
follow-up of matching deficits. A decades-long fit period then suffices to handle the unexpected 
events via their net zero-sum effect over several years.

	 I considered and rejected two possible modifications to the fit procedure. First, to improve 
prediction accuracy one could use temporal weights in (12) or (13) that are skewed towards the 
prediction period. Preliminary results yielded no benefits at the cost of reduced simplicity.

	 Secondly, it would be interesting if somehow some unexpected events could be excluded 
automatically during fitting. For example, exclude the 10% lowest and highest observed mortality, 
taking into account only an 80% bulk of non-extreme observations. Although interesting, this 
approach easily leads to bias. Unexpected excesses may be peaked while subsequent deficits 
are flattened, see Figure 7. This may result in unbalanced exclusion, leading to bias. In The 
Netherlands, the current baseline actually uses some form of this [Riv1], where 20%-25% of peak 
mortality is excluded.


2.12 Accuracy of fitted and predicted mortality: error bandwidth 
The Bayesian analysis is targeted at optimal parameter fitting, which involves a mix of mortality  
fitting, mortality’s natural variation (via ), and (a very limited set of) priors. To evaluate fit and 
prediction accuracy of only mortality, I use a simple ratio measure  of remaining unexpected 
mortality  by observed mortality , closely related to conventional model fit measure :


	 (14)


The  would be equally informative as  but less intelligible, as its typical values in this context 
would be squeezed in a very narrow range (e.g. 99.8%-100%).  resembles approximation (13) in 
the Bayesian analysis, with main difference that (13) sums over a ratio and (14) is a ratio over 
sums. The denominators are similar when , or ca 1k/week at  ca 3%. This 
typically holds for all-age populations over ca. 5M people.

	 The  can be computed in both fit and prediction periods as my model is intended for the 
present and past only; mortality data is always available. The fit period is selected to contain only 
normal mortality;  will be the fit error, or fit “bandwidth” ±2  around observed mortality in 
which 95% of all fluctuations reside. The prediction period can be selected either with normal or 
abnormal mortality; in this report prepandemic data not used for fitting, or pandemic data 
respectively.  will serve very different roles for these two options.
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	 Although I always use the exact , these approximations illustrate the different roles of :


	 (15)


In the denominator approximation,  is negligible with respect to . The  has a weekly 

random component of magnitude ca. ±3% of  [Red4], a seasonal component of roughly ±10%, 
and a long-term component with strength in between. The approximation is thereby accurate with 
relative error < 1% (due to the squared appearance of  vs  and the square root that provides 

ca. a factor half).  is thereby essentially equal to the intuitive ratio of “root-mean-square” model 
error  per average observed mortality . Despite all media hype, the recent pandemic 

component is of the same order as seasonal variation and does not invalidate the approximation.

	 The enumerator approximation differs for fit and prediction period. In the fit period,  is 
almost zero due to model parameter  (not fully as  differs from ). This simplifies  to 

the intuitive ratio of  per average observed mortality . The same holds for the prediction 
period if it contains only normal mortality; then,  will just be somewhat higher than  
depending on temporal distance between fit and prediction periods. In prediction periods with 
abnormal events, however,  can be substantially non-zero representing a temporal net excess 
or deficit . Then,  reflects the relative size of that excess or deficit, with 

 as approximate enumerator.

 	 To determine significance of   in prediction periods with abnormal 

mortality, it must be compared to  , that is, the value of 

 had there been no abnormalities. The latter cannot be measured from observations as 
these include the abnormalities. Public mortality counts do not come separated in two neat and 
reliable components “normal” and “abnormal”, otherwise this model would have no purpose.

	 An essential requirement for determining excess significance is to be able to estimate 

 without using observed mortality in the prediction period. For this, 
in a phase preceeding the fit/prediction on the current dataset, other fit/prediction periods can be 
chosen in other datasets that are known to contain only normal mortality (prepandemic). Then 
both  and  can be computed, both relate only to normal mortality, and a fit-to-
prediction error “amplification” factor can be determined as defined here:


	 	 (16)


Presumably , rising with temporal distance between fit and prediction periods. With 
sufficient normal-mortality fit/prediction data sets, average and deviation  can then be 
obtained via statistics, as generic properties of the proposed model.
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	 When predicting normal mortality in periods that do include abnormal events, the model’s 
prediction error of (unobservable) normal mortality within the prediction period can then be 
estimated using the available  measure:


	 (17)


Subsequently, the significance of resultant excesses or deficits  can then be 
characterized by a -score as in “the excess is -sigma significant”:


	 (18)


This  is always positive due to the definition of . During prediction years with abnormal 
mortality (nonzero ), approximation (15) provides  including sign:


	 (19)


A widely used error bandwidth is : the 95% confidence interval of unsignificant excess.  

	 The  strongly depends on the temporal relation between fit and prediction period, e.g. 
interpolating 2 years centered in 2 decades, denoted as  may have , while 
extrapolating 1 year located 3 years in the future of two decades, denoted by  (the number 

above the arrow indicates years skipped), may have . I assume that there is no systematic 
difference between forward vs backward extrapolation, e.g.  and  are equivalent.

	 In this report, the normal part of mortality during the pandemic will be predicted. As 2023 
cannot already be considered fully postpandemic, there are no postpandemic years yet to 
perform interpolative prediction, and only extrapolation can be used. For years considered in this 
report, 2000-2023, prepandemic to pandemic extrapolation is denoted by  for the whole 
pandemic, and by , , ,  for individual years.

	 With prepandemic (normal mortality) data limited to 2000-2019 in this report, no data is 
available to determine the required statistics . Therefore, I approximate these by   

that use at least 15 years of available prepandemic years for the model fit. For example,  

will be approximated by  consisting of  (prediction of 2002 and 2017),  (2001 

and 2018) and  (2000 and 2019),  totalling  measurements for  datasets.

	 Once postpandemic years with normal mortality become available, interpolation can be used. If 
2024 would be postpandemic, e.g.  and similar can be used. This will not be the case, 
however, as pandemic excesses not only must have come to an end but also have been followed 
by matching deficits. At the earliest, this occurs in 2024 as part of the pandemic’s final phase.

	 Depending on arbitrary preference, the required ’s (or ’s) can be regarded as model 
evaluation results, or as additional model parameters. I prefer the latter, but stress that the ’s 
are of a different level. They represent the generic model’s characteristic of prediction accuracy, 
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estimated using many datasets, contrary to the normal 12 parameters that represent a particular 
dataset. The number of required ’s depends on which and how many periods one wants to 
predict, at what model time resolution, and how finegrained over time one wants to estimate 
prediction accuracy.

	 Although  and  are “objective”, in the end all results must pass the test of human scrutiny. 
Visual inspection and interpretation of predicted mortality over time remain crucial as final judge.


2.13 Simplicity and number of parameters 
The proposed model has only one equation and 12 parameters. Although the model has an 
integrated model fit error/bandwidth via one of the parameters ( ), an explicit parameterless 
measure  is defined describing model fit error/bandwidth more intuitively. Prediction error 
bandwidths can be generated at will, represented by additional parameters  estimated from a 
sufficient number of datasets representative of normal mortality. E.g. when 5 ’s are estimated 
from 10 datasets, they total “0.5 parameters per dataset”. This number goes further down the 
more datasets are used.

	 Typical national baselines have long-term projections involving a complex multitude of 
equations and parameters, whose total number is not perse clear. My model’s equivalent of these 
projections are quadratic trends represented by the linear parameters, and the ’s. For seasonal 
variations, the Dutch national baseline at [Cbs1,Cbs3] used no less than 104 (!) parameters, a 
mean and deviation for each week of the year. It is not clear to what extent implicit smoothness 
constraints (6-week averages over time are used) lower the effective number of parameters. 
Certainly, many more will remain than the 12 of the proposed model. The Dutch baseline has been 
updated recently [Riv1] and uses a different approach now.

	 The number of parameters in the proposed model equals , with  
the polynomial orders of time  and temperature , while 3 is for ,  and . If the orders are 
increased, the number of parameters grows, and the model’s fit accuracy improves by definition. 
The only justification for such model expansion is that the model’s predictions also become more 
accurate, as will be examined in the experiments.

	 Alternative equations as  are also polynomial in both time and 
temperature while requiring less parameters than the proposed model at equal polynomial order. 
Here, a minimum-mortality-temperature  is modeled as time-independent (Figure 2 suggests 

 ℃ over at least 2.5 years). Preliminary results with several such models showed no 
clear accuracy benefit, while the non-linear relations among parameters are more computationally 
demanding when fitting the model.


2.14 Temperature data preparation and reduction 
Temperature data is typically available from weather stations all over the world at a fine time 
resolution of an hour, and at considerable regional resolution, e.g. The Netherlands has 50 
weather stations [Knm]. Huge such temperature datasets can be reduced to single weekly, 
population-wide datapoints for use in the model without loss of accuracy. As the model terms 
containing temperature are linear in , one can average  over all hours in a week, and all 
regions considered, arriving resp. at  (average temperature) and (average of square of 
temperature), which itself equals .


	 One may use appropriately weighted averages for  to increase model accuracy. Regional 
averages may use regional population density as weights. Similarly, if daily temperatures have 
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higher (or less) influence on mortality than during the night, also hourly weights can be used to 
take into account that difference. In this report, I do not take into account population density for 
temperature averages; all regions are weighted equally. From preliminary experiments, I found no 
clear improvement by using hourly weights other than uniform (all 24 hours equally weighted); it 
appears that night and day temperatures are equally important in terms of health pressure.

	 Possibly, the human body or housing somehow smooths out temperature over several hours 
and/or days, thereby remaining sensitive to temperature dynamics only at time scales of more 
than a few days. At shorter time scales, only average temperature  should then be taken into 
account, ignoring  (and ). From preliminary experiments, I found no use of taking this effect 
into account.

	 A more implementational note, as  changes very slowly compared to , to high precision the 
result of  in model (11) can be approximated by applying filter  only to temperature 

as , which may simplify data processing. I use this in all results.


2.15 Transient effect at start of analysis 
Every analysis starts at some time , and ignores the past before it. Simply applying the HPA/
FPD filter on data starting at  is equivalent to applying it to all of time, with health pressure 
equal to zero before . While this is fully correct for health pressures as covid that simply did 
not exist before some date, it is not correct for the everpresent health pressure of natural 
mortality, represented by temperature. For the latter, a zero start health pressure produces a 
strong spurious transient effect at the start of the analysis, with duration of several  of time.

	 This effect is not an implementation-level detail, but an essential property of the model relating 
to the state of the frail pool. All health pressure events prior to , and mainly only those of a 
few  time before, influence the frail pool’s state at . That state is required at the start of 
the analysis.

	 The simplest way to handle the transient effect is to observe health pressure (temperature) 
starting a few years earlier, at , and apply the filter on that so that transient effects 
have vanished at . The full mortality model is then applied from  and on, with mortality 
observations also starting from . This solution requires considerable additional health 
pressure data prior to , to determine the frail pool’s state at  which in my simplified model 
is just one number. An alternative is to (gu)estimate the average health pressure (temperature and 
deviations) before .

	 In this report, all data starts at  of week 1 of year 2000, and I opted for a guestimate of 
earlier health pressures, by mirroring available data towards the past:


	 (20)


I use  covering all years used in the analysis; for 2000-2023,  will run from 0 to 24 years. 
When this is fed into the HPA/FPD filter , it automatically filters health pressures including 
seasonal effects in a weighted way, with most weight assigned close to  ( ) and 
weights declining exponentially with distance from  via .
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2.16 Native weekly, derived monthly/yearly and winteryearly time resolution 
I fit the model always on weekly data. Afterwards, additional monthly and yearly values of 
observed, fitted and predicted mortality are derived, whose evaluation is thus based on native 
weekly optimization. For months, weekly data is accumulated by a uniform filter of ca 4.3 weeks, 
while retaining weekly time resolution. For years, mortality is accumulated over the 52 or 53 
weeks attributed to each year, with yearly time resolution. Data handling would be easier if 
governments and institutes decided to provide public data on daily basis, to handle the 
awkwardly incompatible week/month/year overlaps.

	 Additional winteryearly resolution is introduced, denoted e.g. by 2016/17 meaning July 2016 
to/including June 2017. Winteryears capture a single winter’s mortality, relevant when measuring 
mortal events that focus on winters, such as influenza and covid. Normal calendar years mix up 
two halfs of consecutive winters, and thus always smooth out seasonal events over two years.

	 The more events are mixed together, the more they smooth out, resulting in lower model errors. 
Native weekly model fit errors are highest, followed by monthly, winteryearly and finally yearly fit 
errors. This order is natural, and not the primary factor in deciding which resolution to use.

	 The choice for a specific resolution depends on intrinsic relevance of the period, as it enables 
to quantify events within and localize events among these periods. Weekly and monthly resolution 
enable localization of mortality waves. Yearly resolution enables quantification of net effects of 
excesses and deficits, and connects to usual reporting of mortality. Winteryears, however, match 
better with generic seasonal mortality that peaks in winter. They are certainly preferential when 
they enclose a set of correlated events, e.g. an observed (naturally occurring) deficit in autumn 
followed by an excess in spring as occurred in The Netherlands in 2019/20.

	 Model prediction errors differ from fit errors as they are less predictable emergent properties of 
the world and the proposed model; they may show other behaviour.


2.17 Additional determinants and lifetime lost/saved 
When significant excess mortality  is detected, one can expand the model with one or 
more additional determinants :


	 (21)


	 Some determinant

	 Health-pressure function for determinant 


	 Determinant-specific HPA/FPD filter, two parameters , 


Depending on the type of determinant,  may incorporate parametrized polynomials in  and  
such as with temperature, or something completely different. Ideally, the additional model term 
reduces  such that , thereby providing evidence that formerly-abnormal 
mortality becomes “normal” or expected when  is considered.

	 A major advantage of the proposed model is that lives lost   and lifetime lost  related to 

 (negative quantities refer to lives and lifetime saved) are very easily determined:


	 (22)
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The  is the long-term mean health pressure of determinant . For temperature,  and 

 are typically positive in winter and negative in summer. The precise definition of  is not 
important in this report, as I only use it for pandemic determinants of covid and its vaccines. For 
these,  is zero, as both did not exist prior to the pandemic.


	 The determination of  requires that  can be measured well, without degeneracy. In 

case of a merged degeneracy ( ), the found  may be regarded as a lower-

bound for real  and used to determine a lower-bound on lifetime-lost/saved. In case of a 

diverged degeneracy ( ), one can choose to enforce merged degeneracy in the 
model in order to obtain the lower-bounds on  and , or just resort to lives lost . In 

this report, I always determine an explicit 95% CI or CLB of  via the Bayesian analysis.


2.18 Pandemic determinants: covid tests and vaccinations 
The model will be applied on the recent pandemic, to quantify mortality excesses and examine 
possible causes. During 2020-2023, several covid waves, non-pharmaceutical Interventions (NPIs) 
and vaccination campaigns took place. Determinants for such pandemic events will be directly 
integrated into the model, and parameters are optimized for both normal and pandemic-related 
mortality, thereby creating an exceptional situation for pandemic-related mortal events, namely 
that they are no longer abnormal. Instead, all that correlate with the determinants have become 
“normal”.

	 As there are no periods with other but similar pandemics, the model is fitted on the only 
pandemic at hand. The goal is not to predict mortality during the pandemic, but to explain 
observed mortality. A good explanation is equivalent with a model that fits well over the entire 
period of 2000-2023. Determinant-related parameters obtained in the fit represent pandemic 
knowledge gained.

	 My pandemic model includes determinants of positive covid tests  and vaccine dose 
volumes administered . Stringency Indices (SI) of NPIs are not considered. Model parameters 
are covid Case Fatality Rate ( ), Vaccine-dose Fatality Rate ( ), and Vaccine Effectivity 
( ) against covid mortality. Together, these capture mortal events by covid, the buildup and 
waning of natural immunity and vaccine-induced protection, and fatal adverse events by 
vaccination [Hul].

	 Viral waves and campaigns followed each other quickly during the pandemic, see Figure 9. 
While mortality waves are expected to follow viral waves, at various times all three of waves, 
campaigns and mortality coincided to some extent. Clearly, it will not be easy, by far, to 
disentangle effects among ,  and , based on these public/aggregated data.

	 Source [Eur] provides age-stratified vaccination volumes  with dose/campaign number , but 
some doses overlapped considerably in time (doses 1+2, and 4+5), while others had near-zero 
volumes (doses 6+7). For increased measurement significance, and to prevent spurious 
differential overfitting effects, I combined all 7 dose series in just 4 “campaigns”  with 
associated : (1+2)/2, 3, 4+5 and 6+7. I averaged the primary series, as the two doses 
overlapped very strongly in time, and a single dose was in fact regarded as only half of full 
vaccination. Dose 6+7 data was only available in The Netherlands at the time of data acquisition.
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Figure 9: Weekly pandemic determinants for the Netherlands 2020-2023. Positive covid tests per 
half or whole year, vaccine doses per combined campaign, and mortality for reference. 

Test case numbers  from [Eur] are not stratified to age or viral variant. When applied with age-
stratified mortality data, I am relying on reasonable proportionality of case numbers over all age 
categories. Further, I split  into “waves”  based on calendar time; four half-year waves for pre-
omicron, and two whole-year waves for omicron. This may not be the most accurate 
representation of reality, but it enables to capture dynamics and pathogenicity of viral variants, 
and especially the huge differences in testing volumes (e.g. the 1st wave had high mortality but 
few testing). I gave the periods smooth, slightly overlapping transition boundaries. I implemented 
this by applying a Gaussian (normal-distributed) smoothing filter with a width σ = 3 weeks on the 
boundaries of the periods. This leads to error-function-shaped transitions, with a zero net effect 
on total number of tests.

	 For some countries, positive tests data is so bad as to be become partly unusable, see Figure 
10. During the 1st wave, tests were nearly zero in France. In Sweden, testing was minimal but 
went up when mortality went down. Both lead to infinite or strongly varying  over time during 
the first half of 2020, incompatible with a single parameter value. In the pandemic experiments, 
this will be handled by excluding the first half of 2020 in the analysis for France and Sweden. 
Rather than excluding the countries completely, this still enables the analysis of vaccine-related 
pandemic parameters. In FR and SE, all -derived quantities such as lifetime lost to covid will 
thus exclude the 1st wave.




Figure 10: Positive test data in France and Sweden does not represent the 1st mortality wave well 
(blue line Wuhan 1). 

All in all, the race to extract use out of unreliable data resulted in 10 time-series, 6 for covid tests 
 and 4 for vaccination campaigns , and 2 countries requiring special attention.
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	 My pandemic model adds two terms to the normal mortality model:


	 (23)


	 Positive covid tests per week, over time for wave/viral-variant 

	 Absolute number of vaccine doses per week, over time for campaign 

	 Case Fatality Rate of wave/viral variant  for the unvaccinated

	 Vaccine-dose Fatality Rate for campaign 


	 Covid specific HPA/FPD filter, parameterized by 


	 Vaccination specific HPA/FPD filter parameterized by 


	 Population-average vaccine effectivity over time against covid mortality


Both  and  are aggregated counts over the population which are unlikely to have a non-linear 
relation with health or mortality; therefore no quadratic effects via  or  are modeled.

	 Plain values measured for  are uninteresting as they are scaled in many ways; the 
definition of  combines relevant covid Infection Fatality Rate (IFR) with the subjectivity and 
irrelevance associated with test policies and public test-preparedness etc. Covid tests  typically 
undercount true cases by a considerable factor (especially in first and last waves). While IFR is 
limited to 100%,  absorbs the undercount factor, which could even lead to values above 
100%.  Additionally, covid test data  are not age-stratified, and when used with mortality of age-
stratified subpopulations,  will absorb the proportion of subpopulation to entire population.

	 The role of  in this model is to represent covid mortality via the productsum  (in 
which all above factors cancel), derive lifetime lost, enable  measurements, and prevent 
confounding the measurements of .

	 The  captures the time-varying aspects of covid IFR that depends on viral variant, as well 
as the buildup and waning of natural immunity, all in the unvaccinated population. Without explicit 

 modeling,  would refer to the entire population and automatically incorporate  
population-average vaccine-induced protection, albeit at a rough temporal resolution of one fixed 
value per half/whole year for the entire population. The values measured for  would then be 
lower, assuming  > 0.

	 My  model captures the start of protection after vaccination as well as its continuous 
decline over time per vaccinated person, via population-average vaccine effectivity , 
implemented by default linear filter methods:


	 (24)


	 Population-average vaccine effectivity, over calendar time 


	 Absolute number of vaccine doses given over time (not cumulative), for all campaigns
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	 Total number of people in the population over time

	 Vaccine effectivity for an individual, over time-since-vaccination  

	 Individual time-since-vaccination 

	 Initial individual , right after vaccination, at  = 0

	 Time scale of  waning over time-since-vaccination


Although  may start out high (e.g.  near 100% was often reported), it wanes quickly 
over time [Wu], resulting in the rollout of no less than 5 booster campaigns in just 2 years. I have 
modeled the waning by a simple negative exponential curve with a characteristic time scale .

	 This  model allows for the representaton of so-called “system dead-time”; a  value 
higher than 1 in (24) produces a  that remains saturated at 100% for some time and only 

then starts dropping, see Figure 11. I make use of this by allowing  > 1 in the model. When 
 > 1, the initial period during which the vaccine’s effectivity remains at 100% is:


	 (25)


 

Figure 11: The model can represent a population-wide  that remains at maximum protection 
of 100% for some time and then starts waning. 

My  model is inevitably approximate and does not capture all kinds of intricacies, such as 
delayed protection due to immunity build-up after vaccination, and individual  saturating at 
100%, relevant e.g. when a booster dose adds 100% to whatever protection is remaining of the 
previous dose. My model saturates protection at population-level only.

	 Similar to the normal mortality model,  and five ’s are non-linear parameters that can only 
be measured by a brute-force numerical method. The  and  are linear parameters 
similar to  of the temperature model. The ,  and  are physically restricted to 
0-100% in reality, but in the context of this model the upper bound need not hold or be enforced 
as explained for  and . The  is expected to be very low and to remain below 100% 
automatically without explicit model restrictions. Essentially, only the zero-lower-bound of 0% 
remains relevant, and must be enforced by the model’s prior parameter probabilities, similar to the 
non-linear parameters of the temperature model. Brute force numerical methods can directly 
enforce the zero-lower-bound. If all non-linear parameters are fixed to default values, and one 
resorts to linear regression to find all linear parameters, repeated linear regression can be used. If 
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a spurious negative  or  is encountered, the associated  or  is successively 
removed, effectively forcing the  or  to zero, and linear regression is repeated.

	 Although the model’s zero-lower-bound on  or  represents real physical constraints, 
one can rightfully argue that such a bound creates a bias, transforming zero-mean randomness 
into net-positive values. Therefore, an experiment will be included without the zero-lower-bound.

	 From the pandemic parameters one can derive lives and lifetime lost to covid and vaccinations, 
and saved by vaccine-protection:


	 (26)


Despite all my disclaimers on data reliability and model limitations, the pandemic model captures 
the main features of covid and vaccines. It has 16 parameters, 10 linear (6 , 4 ) and 6 
non-linear ( , , , , , ). For pandemic years, this is 1 additional 
parameter on average per quarter-year during a 4-year period with highly abnormal mortality 
dynamics. The full pandemic model including time and temperature has 28 parameters, and will 
be used to fit mortality of 24 years from 2000-2023 covering 1252 weeks, on average ca 1 
parameter per 45 weeks.

	 Parameters are distributed non-uniformly over pandemic and prepandemic periods, at ca 4.5 
and 0.5 parameter per year respectively. A more balanced situation would be if e.g. prepandemic 
influenza tests and vaccinations were also included, but that is beyond the scope of this report. 
The non-uniformity may make the model fit better in the pandemic period versus the prepandemic 
period. When the model is evaluated on weekly/monthly/yearly time scales, the number of 
mortality values is 52/12/1 per year. At 4.5 parameters per pandemic year, the model may show 
signs of overfitting when evaluated at derived yearly resolution, but this depends on 
characteristics of the pandemic determinants.

	 I will experiment with various pandemic models: -only, -only, + , etc, and the 
full pandemic model + + .


3. Results 
Next follow a description of datasets and five sets of experiments. First, model variants in terms 
of polynomial order, use of HPA/FPD and population-relative mortality are examined and a 
selection is made. Secondly, the proposed model is fit to normal mortality during prepandemic 
years 2000-2019. Thirdly, prediction error bandwidth factors are determined. Fourthly, pandemic 
predictions are made for years 2020-2023 to measure excess mortality. Finally pandemic 
determinants are added to the model to assess possible excess causes.


3.1 Datasets 
Table 1 provides an overview of the 14 datasets used; the “4-NL” datasets with age-stratified 
mortality and hourly temperature data, and the “10-EU” datasets with all-age mortality and weekly 
temperature data. As FR and IT are time-limited, several experiments requiring two full decades of 
prepandemic data will exclude these countries, referring to “8-EU datasets”. The FR and SE 
datasets have unusable 1st wave covid test data, requiring special handling.
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Table 1: All 14 data sets, grouped in 4-NL finegrained datasets, and 10-EU country datasets. Data 
limitations in bold. The datasets named 8-EU are the 10-EU sets minus FR and IT. 

For the Netherlands, data was obtained for years 2000-2023 from [Cbs2,Knm]:


• Weekly absolute mortality for age categories 0-65, 65-80, 80+ and all-ages

• Yearly population size at 1 January for the same age categories

• Dutch national mortality baseline, weekly prediction 2020-2023 all-ages only, version based on 

prepandemic conditions (the baseline was modified later including pandemic conditions)

• Hourly averages of temperature in 50 subregions


For 10 European countries, the following was obtained from [Eur, Noa, Riv2] and google:


• Observed absolute weekly mortality, all-ages, 2000-2023 (FR and IT from 2011 & 2013 up)

• Daily average and/or min-max temperature, with limited (1 to 10) weatherstations per country

• Weekly number of positive covid tests (all ages only)

• Weekly number of vaccine doses administered (all four age categories)

• Population size at 1 Jan 2022 only


Yearly population sizes were interpolated/extrapolated to weekly values. Weather data was 
averaged to weekly, whole-population datapoints without regional weighting. When only min/max 
temperatures were available, average of min/max was used.


3.2 Model variants and selection 
The proposed model comes in several variants by polynomial order of time and temperature, the 
use of HPA/FPD (none, merged, full), and absolute vs population-relative mortality. Based on 

Dataset Country Ages Population Mortality 
data years

Effective 
nr. of 

weather 
stations

Weather 
time 

resolution

Covid 
tests 

1st wave

NL 0-65

The 
Netherlands

0-65 14M

2000-2023 33.7 hour
NL 65-80 65-80 3M

NL 80+ 80+ 1M

NL ALL All 18M

BE Belgium

All

12M 2000-2023 1.0

day

BG Bulgaria 6.5M 2000-2023 3.0

DE Germany 83M 2000-2023 2.6

ES Spain 48M 2000-2023 8.6

FI Finland 5.5M 2000-2023 2.0

FR France 65M 2011-2023 7.0 near-zero

IT Italy 59M 2013-2023 9.5

NL Netherlands 18M 2000-2023 2.3

PL Poland 37M 2000-2023 4.0

SE Sweden 10.5M 2000-2023 4.6 inconsistent

Total 10 countries 344M
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native-weekly fit and prediction errors, I will make a selection. Fit accuracy is determined as 
average over all datasets, with the model fit on prepandemic years 2000-2019 (or as data permits 
for FR and IT). Prediction accuracies are averaged over 12 datasets (all minus data-limited FR and 
IT) and over forward/backward 16y-to-4y extrapolation (’00-’15 to ’16-’19 and ’04-’19 to ’00-’03).

	 Table 2 shows prediction accuracy for all model variants, applied on absolute mortality. 
Observations are:


• Unanimously, the optimal polynomial order of time is , consistent with long-term 
mortality developments defined in this report, with 20y (total duration of this experiment)


• The optimal order of temperature is , while  performs nearly equal

• The use of HPA/FPD lowers prediction error substantially, from ca 7.4% to 6.4% (rel. ca -14%)

• Merged and full HPA/FPD perform practically the same


Table 2: Average prediction error (native weekly) for model variants, by time and temperature's 
polynomial order and the use of HPA/FPD. In grey relevant variants, in bold the proposed model. 

The four best variants, merged vs full HPA/FPD and , perform nearly the same in 
terms of mortality prediction. The choice for any of these variants depends fully on whether one 
has an interest in measurements of parameters , , and whether such measurements are 
feasible with sufficient accuracy.

	 Table 3 shows model fit errors for the four best variants, and estimated non-linear parameters 
in terms of mean and deviation over all datasets (excluding diverged ).


Table 3: Prepandemic 2000-2019 model fit errors (native weekly), non-linear parameters  and 
HPA/FPD times, by mean and deviation over the given datasets. In bold the model fit error. 

Ot = 2
L ≥

OT = 3 OT = 2

no HPA/FPD Merged HPA/FPD Full HPA/FPD

12 10 10 9.7 9.7 12 9.5 9.2 9.2 9.2 12 9.5 9.0 8.9 8.9

12 9.7 9.6 9.2 9.2 12 8.6 8.3 8.2 8.4 12 8.6 8.2 8.2 8.3

10 7.6 7.5 7.3 7.6 10 6.9 6.49 6.34 7.8 10 6.8 6.46 6.36 7.6

11 9.0 10 9.1 9.5 11 8.5 7.7 9.9 12 11 8.5 10 11 13

T 2

t1

T 4T1 T1

t0

T3

Average prediction error  [%]μEprediction

t2

T 4T 2T1T 0

t3

T3 T 4T 2T 0T 0 T3

OT = 2 vs 3

τHPA τFPD

τFPD

Merged HPA/FPD Full HPA/PFD

Dataset

4-NL 3.9 
±1.4

9.7 
±3.1

5.3 
±0.8

3.7 
±1.4

9.4 
±3.0

5.2 
±0.8

3.9 
±1.4

4.7 
±1.0

28 
±16

5.3 
±0.8

3.7±
1.3

4.0 
±1.5

29 
±13

5.1 
±0.8

10-EU 4.6 
±0.7

12 
±0.9

5.1 
±0.7

4.6 
±0.8

12 
±0.8
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4.4 
±0.6
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±2.0
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±22
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±0.7
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±0.9

4.7 
±1.3

38 
±20

5.0 
±0.7

4.2 
±0.9

4.8 
±1.8

38 
±20

4.9 
±0.7

 
[w]

τHPA 
[w]

τFPD 
[%]
Efit


 [w]
τ  

[w]
τHPA 

[%]
α  

[%]
α  

[w]
τFPD 

[%]
α

OT = 2



 [w]
τ  

[%]
Efit

OT = 2

 
[%]
α  

[%]
Efit 

[%]
Efit

OT = 3OT = 3

α

 of 30 58  



Observations are:


• Fit errors  and remaining mortality variability  are nearly equal for all model variants, and 
decrease very slightly with the model's number of parameters: expected and irrelevant


• Across all-age datasets,  and merged HPA/FPD  are consistent at ca 4.5% and 12w


• Full HPA/FPD  and  are more variable over datasets than , regardless of 


The four variants perform practically the same in terms of model fit errors. The accuracy of HPA/
FPD parameters (in terms of inter-dataset-variability) does not significantly differ between  
or , so at this point I choose  as proposed in the introduction. The minor prediction 
improvement does not seem worth the 3 extra parameters. And I do like the symmetry .

	 Given the consistent value 11 weeks for merged HPA/FPD, it is interesting to see whether 
such consistency applies also to for , , i.e. whether their strong variability in Table 3 is 
only an issue of accuracy/degeneracy. If so, generic values may be applicable in general. Table 4 
show eight model variants, including those with non-linear parameters fixed to results of Table 3.


Table 4: Model fit and prediction error for model variants. Note the marginal differences in the four 
variants at right. The two rightmost variants have non-linear parameters fixed to generic values; all 
9 remaining linear parameters can be fit with default linear regression. In bold the proposed model. 

All four models that include HPA/FPD in whatever form perform more or less the same. Out of 
interest in FPD values, I select the model with full HPA/FPD, with 12 parameters, 3 non-linear and 
9 linear. The two models with non-linear parameters fixed to generic values can be fitted fully with 
default linear regression methods and predict mortality just as good as the proposed model. 

	 Finally, Table 5 shows results of the model applied on absolute versus population-relative  
mortality. These results are preliminary, as only 4-NL datasets were available for use. Also, relative 
mortality results may be sub-optimal as yearly population sizes were interpolated to weekly.


Efit α

α τ
τHPA τFPD τ OT

OT = 2
OT = 3 OT = 2

Ot = OT

τ ≈
τHPA τFPD

Model variants

Merged

HPA/FPD

Full 
HPA/FPD

# linear 
parameters 1 3 3 9 9 9 9 9

# nonlinear 
parameters 0 0 0 0 2 3 0 (fixed) 0 (fixed)

10.5 8.5 7.9 6.4 5.13 5.03 5.23 5.14

wrt ref - -19% -25% -40% -51% -52% -50% -51%

12.2 10.1 10.0 7.5 6.49 6.46 6.46 6.40

wrt ref - -17% -18% -39% -47% -47% -47% -47%

Constant

(ref)

t0T 0

Time

only

t2T 0

Time+

Temp.

t2T 2

Merged

HPA/FPD


 α = 4.4 %
τ = 11w

Full

HPA/FPD


α = 4.3 %
τHPA = 4.7w
τFPD = 38w

Temp.

only

t0T 2

 [%]μEfit

 [%]μEprediction
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Table 5: Fit and prediction results for absolute vs relative mortality, only for 4-NL datasets. 

These results are not simple and unanimous, differing over time resolution, age groups, and fit vs 
prediction errors. Tentative observations are:


• Native weekly fit and prediction accuracy seem indifferent to absolute or relative mortality, with 
a slight preference for relative mortality in prediction for age-stratified populations


• Derived yearly predictions using relative mortality seem substantially better for ages 0-65 
(-27%), but substantially worse for 65-80, 80+ and all-ages (+13%, +27% and +38%).


This may relate to migration occurring mostly in younger, more healthy people, while mortality 
occurs in older, more frail people.

	 Figure 12 shows the population size for ages 0-65 in The Netherlands. From 2003 to ca 2021, 
the population is quite stable within ca. 1%, but before and after, a “disruptive” event occurs with 
dynamics stronger than my parabolic long-term developments model can represent.




Figure 12: Population growth in The Netherlands, ages 0-65. 

The 2000-2003 period is used in Table 5, strongly determining the results. From 2022 to 2023, 
during the pandemic, a disruptive event occurs of accelerated net immigration of ca. 3%, from 
14M in January 2022 to 14.4M in December 2023. Net immigration in The Netherlands was ca. 
+0.6% during 2016-2021 to ca. +1.6% in 2022 and ca. 1% in 2023 [Cbs4].

	 These results are in line with expectations discussed in the introduction, and certainly need 
more examination with additional datasets. If datasets were available that are highly age-stratified 
(e.g. 5 year bins) and come with weekly-updated population tables, clearly population-relative 
mortality is always the better choice; such datasets, however, are not (publicly) available.

	 For the remainder of this report, I will use absolute mortality on all datasets, except for NL 0-65 
for which I use population-relative mortality. For compatibility with derived quantities that use 
absolute numbers (e.g. lifetime lost/saved), I will also use the NL 0-65 dataset with a standardized 

Absolute/Relative Mortality

Native weekly Derived Yearly

Dataset

NL 0-65 5.2 / 5.2 5.5 / 5.3 1.2 / 1.0 2.2 / 1.6

NL 65-80 4.8 / 4.9 6.1 / 5.9 1.4 / 1.3 2.4 / 2.7

NL 80+ 6.4 / 6.6 9.0 / 8.6 1.6 / 1.4 3.0 / 3.8

NL ALL 4.6 / 4.6 6.2 / 6.2 1.2 / 1.2 2.1 / 2.9

Average 5.3 / 5.3 6.7 / 6.5 1.3 / 1.2 2.4 / 2.8

+1% -3% -7% +13%

 [%]Efit  [%]Eprediction

 Rel vs AbsE

 [%]Eprediction  [%]Efit
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population over time, that is, scale its dynamic population to be constant over time, equal to its 
mean of ca 14M people (and rescale all other relevant data such mortality and pandemic 
determinants similarly).


3.3 Prepandemic model fit 
The proposed model is fitted on all datasets during prepandemic years 2000-2019 (1043 weeks), 
or winteryears 2000/01-2018/19 (991 weeks) or as data permits (for FR and IT). Figure 13 shows 
results for NL ALL, with fit error 4.6% at native weekly resolution, and 3.5%, 1.6% and 1.2% at 
derived monthly, winteryearly and yearly time resolution. This confirms the ordering of fit error 
magnitudes as a function of resolution.




Figure 13: Prepandemic 2-decade model fit for dataset NL ALL at derived yearly/winteryearly/
monthly resolutions, and native weekly resolution (zoomed in on 2013-2019). Bandwidths are 95% 
confidence intervals ( ± 2  of fitted mortality). 

At both yearly and winteryearly resolutions, the overall parabolic trend and several local details 
such as the dip/rise in 2014/15 are well-represented by the model. At monthly and weekly 
resolution, seasonal variations are followed well, such as the mild winter 2013/14 and the strong 
winter 2017/18. This is due to the temperature part of the model as both observed and modeled 
mortality for all winters do not follow a simple quadratic trend.

	 At various occasions, the model does miss some events as winterpeaks and summerdips, see 
the monthly result. Also, the weekly result shows that my model still does not explain the strong 
weekly variance in observed mortality, one of the goals discussed in the introduction. This fit 
result has an  of ca 4%, the parameter for mortality’s natural variability. This is higher than the 
3% found in [Red4], in accordance with still unexplained weekly variance plus a few missed 
events that [Red4] accounted for automatically (that method is not applicable for mortality 
prediction).

	 Figure 14 shows the same weekly result but with mortality relative to population size. The 
model fit error is essentially the same, 4.59% for relative mortality versus 4.58% for absolute 

Efit

α

 of 33 58  



mortality. At two decimals precision, relative-mortality fit errors are 4.6%, 3.6%, 1.5% and 1.2%, 
nearly equal to those of absolute-mortality at all four time resolutions, in line with previous results  
(Table 5).




Figure 14: Same result as Fig. 10 with the model applied on mortality relative to population size. 

Figure 15 illustrates a few results with model variants time-only, temperature-only, time and 
temperature but still without HPA/FPD, and the proposed model.


 
Figure 15: Illustrative fit results for three partial models and the proposed model at bottom-right. 

Table 6 and Figures 16-17 show results for all datasets. In general, the model seems to fit reliably 
similar for different age-groups, countries, and data quality. There is practically no difference in 
the results for datasets NL ALL vs NL (hourly vs weekly temperature data, 34 vs 2 weather 
stations), and BE vs ES (1 vs 9 weather stations). Model fit errors are highest at week resolution 
and lowest at year resolution: winteryears consistently mix mortal events less than calendar years.

	 The yearly result for DE (Germany) has a fit error of 1.1%, which can be compared to the 
quadratic trend-only result in Figure 1 with an error of ca. 1.7% (±14.5k per ca. 870k deaths per 
year). The proposed model outperforms a quadratic trend-only model thus strongly (ca. 34% error 
reduction, ca. 56% variance), even when not natively fit on years but on weeks.

	 Table 6 also shows results for nonlinear parameters. On average over all datasets, 
4.3±0.9 %,  4.7±1.3w and 38±20w. The  and  are stable to some extent 
over all datasets, but ’s 95% CI or CLB range per dataset is substantial, and so is its 
variability over datasets. The 4-NL results shows  rises with age, suggesting that the few frail 
among the young are frailer than the many frail among the elderly.


α ≈
τHPA ≈ τFPD ≈ α τHPA

τFPD

τFPD
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Table 6: Prepandemic model fit errors. Fit period is 20 calendar years (2000-2019), except for 
winteryearly resolution with 19 winteryears (2000/01-2018/19). Parameters are given by 95% CI, or 
CLB if diverged. Statistics over datasets are average and deviation of dataset’s mean parameter 
values (not shown, only included if not diverged). 

 
Figure 16: Prepandemic 2000-2019 model fits for age-groups in The Netherlands, datasets NL 
0-65, 65-80 and 80+. The peak in 2014 for ages 0-65 is the MH17 airplane incident. 

Nonlinear parameters

Dataset weekly

(native)

monthly

(derived)

winteryearly 
(derived)

yearly

(derived)

NL 0-65 5.2 2.8 1.2 1.0 1.9-2.7 2.8-6.3 5.5-11

NL 65-80 4.8 3.1 1.4 1.4 3.1-3.6 3.0-6.6 12-34

NL 80+ 6.4 5.1 2.2 1.6 5.4-6.0 5.4-7.0 27-45

NL ALL 4.6 3.5 1.6 1.2 3.9-4.3 4.0-5.0 33-65

BE 5.4 4.1 1.6 1.6 4.7-5.1 4.4-6.1 29-64

BG 5.9 4.2 1.8 1.6 5.2-5.7 2.9-3.7 >280

DE 4.4 3.5 1.4 1.1 4.0-4.4 5.4-7.0 32-61

ES 5.5 4.5 1.8 1.6 4.9-5.4 3.3-3.9 62-120

FI 5.3 3.9 1.3 1.1 3.9-4.5 3.7-6.2 >43

FR 3.7 2.8 0.8 0.6 3.3-3.8 3.8-5.4 23-47

IT 5.0 3.8 1.1 1.3 4.6-5.4 2.0-2.8 >68

NL 4.7 3.6 1.6 1.2 4.0-4.4 4.0-5.5 29-49

PL 4.8 3.7 1.4 1.4 4.4-4.8 4.0-7.3 19-76

SE 4.5 3.5 1.6 1.0 3.4-3.9 6.0-9.2 13-22

All 14 
datasets 5.0±0.7 3.7±0.6 1.5±0.3 1.3±0.3 4.3±0.9 4.7±1.3 38±20

 [w]τFPD [w]τHPA [%]α

 [%]Efit
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Figure 17: Prepandemic 2000-2019 model fits for 10-EU datasets, shown at derived yearly 
resolution, and native weekly (zoomed in 2013-2019). 

 of 36 58  



3.4 Prediction bandwidth: fit to prediction amplification 
Table 7 provides fit-to-prediction error amplification factors  for 1-4 (winter)year extrapolation 
and interpolation during prepandemic periods. As no major unexpected events took place in this 
period, the fit-to-prediction error amplification  and its average  are representative for 
prediction of normal mortality.


Table 7: Fit-to-prediction error amplification  for extrapolation in the prepandemic period (years 
2000-2019 or winteryears 2000/01-2018/19), for 12 datasets (all except time-limited FR and IT). 
Interpolation results are for reference (winteryear results not computed). 

The  for 4-year extrapolation and interpolation at yearly time resolution are 2.6 and 1.7 
respectively. Clearly, interpolation with even a single year at the other end of the prediction period 
strongly reduces . In this report, interpolation results are illustrative and become relevant only 
when the first postpandemic year becomes available. Pandemic predictions made in the next 
subsection only use prepandemic extrapolation.

	 All extrapolative  range from 1.1 to 3.2, and scale consistently with extrapolation distance 
from the fit period. Completely opposite to fit errors,  are lowest for weekly resolution and 
higher for monthly, winteryearly and yearly resolution. For 4-year extrapolative predictions, yearly 

 is substantially above winteryearly’s , while yearly 1.3 is far lower then 

winteryearly’s 1.5 (Table 6). Their product  is the relevant estimated error in prediction

, ca. 3.4% for normal years and ca 2.8% for 
winteryears. The use of winteryears for mortality predictions provides a relative error reduction of 
ca. 18% over calendar years.


μA

A μA

Type of Prediction 
4 out of 20 calendar years


or 19 winteryears Weekly Monthly Winter

yearly Yearly

Extrapolation

year 1 1.1 1.2 1.1 1.5

year 2 1.2 1.3 1.2 1.9

year 3 1.3 1.5 1.8 2.3

year 4 1.4 1.6 2.4 3.2

all 4 years 1.3 1.4 1.9 2.6

Interpolation

year 1 1.2 1.3 - 1.6

year 2 1.1 1.2 - 1.4

year 3 1.2 1.3 - 1.4

year 4 1.4 1.6 - 1.5

all 4 years 1.2 1.4 - 1.7

μA

A
≥15 1 1

A≥15→4

A
15 2 1 1 1

A
15 3 1 1

A15→4←1

A
15 1 1 2 1

A
≥15 3 1

A≥15 1

A
≥15 2 1

A
15 1 3 1

A

μA

μA

μA

μA

μA ≈ 2.6 μA ≈ 1.9 Efit ≈
Efit ≈ μAEfit

Eprediction;estimated−for−normal−mortality−only
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3.5 Prediction from prepandemic to pandemic years: excess mortality 
Figure 18 shows the pandemic prediction by the proposed model versus the Dutch national 
baseline, both using only prepandemic mortality observations, all-ages, in The Netherlands. By 
now, an adapted baseline has been introduced that does include pandemic aspects; useful for 
examination of later endemic/postpandemic years but not for determination of pandemic excess 
mortality during 2020-2023.




Figure 18: Comparison of proposed model (dataset NL ALL) and Dutch national baseline; both 
pandemic predictions are based on prepandemic mortality observations. 

At yearly resolution, the baseline’s long-term behaviour seems effectively based on a linear 
extrapolation of earlier years, or maybe even lower than that. This results in substantial derived 
excess mortality, similar to the linear trend results for Germany in Figure 1. My model uses 
parabolic extrapolation, so the yearly results diverge with every year further from 2020; clearly the 
proposed model is much closer to observations, even spot-on in 2023.

	 A close look at weekly resolution shows that the seasonal effect in the baseline is a fixed 
pattern, the same for every predicted year. The pattern is in fact a smoothed average seasonal 
pattern of the past five years (2015-2019), subsequently rescaled per year according to a complex 
long-term trend analysis [Cbs1,Cbs3]. My model uses the actual weekly temperature in prediction 
years and therefore varies every year, still missing some but also capturing some observed 
events.

	 In march 2020, the 1st mortality wave occurred, not predicted by both baseline and model. 
Right after the wave, mortality was close to baseline prediction, but lower-than-predicted by the 
proposed model. In this case, the latter prediction is better in the sense that deficits always follow 
excesses. In summer 2020, a heat wave occurred, which is partly captured by the proposed 
model but not by the baseline. In winter 2020/2021, the 2nd wave was missed by the baseline, 
but highly similar increased mortality was in fact predicted by the proposed model, albeit a few 
months later. In that perspective, the 2nd wave did accelerate mortality slightly causing loss of a 
few life-months per death, but its net excess mortality over the entire winter is considerably less 
than suggested by the baseline. At the second half of 2021, a 3rd mortality wave occurred that 
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was not predicted by baseline and model. In years 2022 and 2023, no clear mortality waves 
occurred and the new model just captured events more accurate than the baseline, both in terms 
of yearly trend and winterpeaks.

	 On yearly time resolution, the prediction errors for proposed model and baseline are 3.8% and 
8.3% respectively during the pandemic; the model yields a more-than-double improvement in 
prediction error, or a ca. fivefold variance reduction (ca 79% lower).

	 Table 8 lists excess mortality numerically in The Netherlands according to the proposed model 
and the Dutch baseline. The differences are substantial, with total excess measured as 18k by the 
model and 56k by the baseline. The proposed model finds a highly significant excess of 11k in 
2020 with 3.5. Other years, or the entire pandemic period, do not show significant excess.

	 Note that the approximation  presented in section 2 holds very 

well for individual years; for multiple years the yearly variability adds to .


Table 8: Pandemic yearly predictions and resultant excess mortality in The Netherlands, dataset 
NL ALL. Significant excesses in bold. 

Figure 19 illustrates excess mortality in The Netherlands. Notably, at all times, both in fit period 
2000-2019 and prediction period 2020-2023, the model succeeds in following the overall trend, 
yielding fluctations that are substantially zero-sum over reasonably small time scales. The 
zoomed-in result at right shows two covid waves in 2020. Not only after the 1st wave, but also 
before, a deficit occurred. Throughout 2021 a remarkable linear slope occurred.


 
Figure 19: Excess mortality for NL ALL, in % of year mortality. Model fitted over 2000-2019, excess 
is observed minus fitted/predicted 2000-2023. Monthly and weekly (zoomed-in) time resolution. 

Figure 20 shows the pandemic prediction by the proposed model for The Netherlands, ages 0-65, 
using relative mortality.


Z ≈
Eprediction ≈ |ΔMexcess /μM |

Eprediction

Absolute mortality in period Excess according to 
proposed model 

Prediction 
period Model Baseline Excess 

baseline

2020 6.5 8.5 171k 15k 11k +6.5% 1.9% 3.5 2

2021 3.5 9.0 170k 15k 6k +3.5% 2.4% 1.5 2

2022 1.5 8.3 169k 14k 2.6k +1.5% 2.9% 0.5 2

2023 0.8 7.2 169k 12k -1.3k -0.8% 3.4% -0.2 3

2020-2023 3.8 8.3 680k 56k 18k +2.7% 3.1% 1.2 3

Observed

μM

Excess 
model

ΔMexcess

ZμAEfit
ΔMexcess

μM

  [%]Eprediction
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Figure 20: Extrapolation from prepandemic to pandemic years in The Netherlands, ages 0-65. All 
results based on population-relative mortality. 

For extrapolative prediction of 4 pandemic calendar years at year resolution, the error made by 
the model in predicting the expected, normal part of mortality is  = ca. 2.6 x 1.0% ≈ 2.6% 

(see Tables 6-7). The excess has yearly  of 6.0%, and is thus 2.3 sigma significant. 

For the 4 winteryears 2019/20-2022/23,  = ca. 1.9 x 1.2% ≈ 2.3% with  of 5.1%; 

the excess is 2.2 sigma significant. Note that the excess in winteryears vs years is similar in 
significance, but different in magnitude (5.1% vs 6.0%). This is expected, as winteryears include 
the 2nd half of prepandemic 2019 instead of the 2nd half of pandemic 2023.

	 Winteryear 2019/20, which includes the 1st covid wave, does not show any excess mortality. 
Weekly and monthly results show two mortality deficits (autumn 2019 and slightly before 1st 
wave), that precompensated the wave. As the deficit preceeds the excess, there is no loss of 
lifetime but a saving, and covid marked the end of it. At the end of 2020, the 2nd wave occurs, 
and a few months into 2021, a strong and continuous excess wave starts peaking strongly at end 
of 2021, and declining but continuing into 2023. 

	 Table 9 quantifies excesses of Figure 20. Note that the excess in 2023 is still higher by value 
than in 2020, and similar for excess in winteryears 2022/23 vs 2020/21. The later excesses are 
only less significant due to the wider bandwidths of later predictions.


μAEfit

Eprediction Z ≈
μAEfit Eprediction

Z ≈
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Table 9: Prepandemic and pandemic excess mortality for The Netherlands, dataset NL  0-65. 
Significant excesses in bold. 

Figure 21 shows results for other age categories in The Netherlands (with absolute mortality).




Figure 21: Extrapolation from prepandemic to pandemic years in The Netherlands, ages 65-80, 
80+, and all-ages. Left) years, Right) winteryears. 

From all results in The Netherlands, several observations can be made:


• Persistent excess mortality is seen only for ages 0-65, reaching significance 4.6 in 2021

• Ages 65+ have just-significant excesses in 2020 and 2021 ( ), but none in any winteryear

• No matching deficit after any excess has occurred in any age category

• The year 2023 shows signs of a possible deficit starting for ages 65+


FPD predicts that excesses fade in a few years even under a sustained health pressure upon the 
frail, and that excess-matching deficits occur once the health pressure is released (Figure 7 top-
left). Overall, two conclusions can be drawn:


Year 2016 2017 2018 2019 2020 2021 2022 2023

+1% 0.4% 0.7% -1% 3.4% 8.7% 6.1% 4.0%

1.0% 1.0% 1.0% 1.0% 1.5% 1.9% 2.3% 3.2%

1.0 0.4 0.7 -1.0 2.3 4.6 2.6 1.3

1.509 1.910 2.308 3.176

μAEfit

Z

ΔMexcess /μM

Winteryear 2016/17 2017/18 2018/19 2019/20 2020/21 2021/22 2022/23 1.147

+0.7% -0.3% -0.2% 0.3% 4.2% 7.9% 4.9% 1.239

1.2% 1.2% 1.2% 1.4% 1.5% 2.2% 2.8% 1.835

0.6 -0.3 -0.2 0.2 2.8 3.6 1.7 2.361Z

μAEfit

ΔMexcess /μM

Z ≈
Z ≈ 2
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• For ages 65+, the moderate, declining excesses and absence of deficits suggest the pandemic 
provided a very modest but persistent health pressure, with a possible release starting the 
earliest by end of 2023


• For ages 0-65, the strong excesses and absence of deficits suggest the pandemic provided a 
strong and persistent health pressure, that is either growing upon the few frail within the age 
category, or remains persistently applied (also) upon the healthy, starting only after the 1st wave  
and with no signs of release in 2023


These are strong and disturbing signals, especially as covid mortality is known to focus on the old 
and frail [Axf,Ghi,Pez], the 0-65 excess rose strongest in 2021 and not in 2020, covid was no 
longer omnipresent in 2023, and vaccines should have eliminated the health pressure during 2021 
or even 2022.

	 Table 10 and Figure 22 provide winteryear results for the 10-EU datasets. Significant excess 
mortality during pandemic winteryears occurs in:


• Germany and The Netherlands	 : never

• Belgium, Finland, Spain and Sweden	 : 1-2 winteryears, 2-4

• Bulgaria and Poland	 : 2 winteryears, 10-12


• France and Italy 	 : unreliable excess overestimation,  are not applicable


Table 10: Pandemic excess significance in 10 EU countries. *) France and Italy have time-limited 
mortality data (from 2011, 2013 up), invalidating the use of amplification factors  from Table 7. 

The results for France and Italy overestimate excess significance due to non-applicable error 
amplification factors . The ’s used for the bandwidths in Table 10 and Figure 22 were based 
on 16-year model fits  and used as approximation for , while France and Italy 
datasets have much less years for the model fit (8 and 10 years). The latter lowers FR and IT’s 
model fit errors and increases their real prediction errors, while estimated prediction errors scale 
down with model fit error. For France and Italy, proper amplification errors  (and/or ) 
should have been computed, which I did not.


Z ≈
Z ≈

μA

Dataset 2015/16 2016/17 2017/18 2018/19 2019/20 2020/21 2021/22 2022/23

BE -1.4 0.1 -0.5 -0.3 2.9 1.0 1.1 -0.5

BG -0.4 0.5 -0.8 1.0 -1.2 10 7.0 -0.6

DE -1.1 -0.2 0.3 -0.5 -0.7 -0.5 1.3 1.2

ES -0.5 0.6 0.2 -0.3 4.3 2.0 0.8 0.6

FI 0.2 1.4 -0.6 -1.2 -0.2 -0.4 3.2 2.3

FR* -1.7 0.1 0.6 -0.3 3.7 7.3 4.4 3.5

IT* -0.8 0.9 -0.7 -0.1 4.4 7.7 2.5 1.8

NL 0.3 0.2 0.4 -1.3 1.3 -0.2 1.8 -0.2

PL -1.6 -0.2 0.6 1.1 0.6 12 5.1 0.1

SE -1.4 1.1 0.1 -0.8 3.5 0.6 0.6 0.8

Z

A

μA μA

A16→4 A20→4

A10→4 A8→4
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Figure 22: Prediction of pandemic mortality by extrapolation from prepandemic mortality, 10-EU 
datasets, winteryearly and weekly. France and Italy have time-limited mortality data (from 2011, 
2013 up), invalidating the use of amplification factors  from Table 7. 

The proposed model does not confirm the findings in [Kuh] of high excess deaths in Germany 
during pandemic years (see Figure 1). Instead, it measures no significant excess mortality in 

A
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Germany during the entire pandemic. This is not due to a high significance threshold;  is 
in fact negative in the first two pandemic winteryears, and starts being positive only in 2021/22. 
Mortality in winter 2020/21 was truly high, and covid may have slightly accelerated deaths. 
Nonetheless, the proposed model predicted these deaths due to winter temperatures, if only a 
few weeks later.

	 Figure 23 further shows that, according to the proposed model, all net excess in Germany 
concentrated in calendar year 2022.


 
Figure 23: Prediction of pandemic mortality by extrapolation from prepandemic mortality, 
Germany. Compare with Figure 1. 

3.6 Pandemic model: determinants for covid and vaccination campaigns 
From here on, the pandemic mortality model is used, including covid test and vaccine dose 
determinants, to explain pandemic excesses and deficits. The model is fitted to the entire period 
2000-2023. The model error is evaluated over the entire fit period as well as the pandemic 
subperiod 2020-2023. Data-limited FR and SE are not used in some experiments, or used while 
excluding the 1st half of 2020 (denoted by 2020.5-2023 in figure legends).

	 Figure 24 illustrates the substantial improvement by the pandemic model for The Netherlands, 
all-ages. The fact that the fit error over the entire period (4.6%) equals prepandemic fit error, and  
fit error for the pandemic subperiod (4.8%) is slightly higher, suggests that the pandemic model is 
both applicable and not overmodeling/overfitting.

	 Table 11 shows pandemic subperiod fit errors averaged over 12 datasets (all minus FR and 
SE), for normal model and partial/full pandemic models. Relative to the normal mortality model, 
the addition of covid mortality (  and ) improves the model most, with an average relative 
error reduction of 47%. From this -only model, a further reduction is achieved of ca. 10% by 
including the vaccine’s fatal effects (  and ), and ca. 10% by the vaccine’s protective effects 
( ). The full pandemic model  provides a 21% error reduction over the 
-only model, very close to the sum of individual contributions of  and , suggesting the 
latter two contribute independently to model accuracy. With respect to the normal mortality 
model, a 58% error reduction is achieved. The full pandemic model has an average fit error of 
5.4% on the pandemic subperiod, slightly above the average fit error of the normal model on 
prepandemic periods of 5.2% (on the same 12 datasets).

	 Clearly, the main determinant of pandemic excess mortality is covid. Further, the vaccine’s fatal 
effects appear to match its protective effects. This resonates with findings in [Ben], that mRna 
vaccines (as used mostly in The Netherlands) have a net zero effect on all-cause-mortality.

	 Figures 25-26 show results for all datasets. As expected, the yearly fit accuracy is better during 
pandemic years than prepandemic, due to the assymetric distribution of model parameters over 
prepandemic and pandemic years. The model fits most datasets well, except FR and SE where 
the first covid wave is not well represented by test data .
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Figure 24: Top) Normal model with prepandemic fit and pandemic prediction, Middle) Normal 
model fitted to entire period incl pandemic, Bottom) Pandemic model fitted to entire period. 
Dataset is NL ALL. Fit error within the pandemic subperiod is more than halved from 10.2% to 
4.8% (over fourfold variance reduction) and close to the prepandemic fit error (4.6%). 

Table 11: Pandemic models from none to full. The model is fitted on 12 datasets (all except FR and 
SE) over all years 2000-2023, and the average partial fit error is shown for pandemic years 
2020-2023. At right for reference, the prepandemic fit error (2000-2019) by the normal model. 

Normal

model

CFR

only

VFR

only

CFR and 
VFR

CFR and

VE

Pandemic model 
CFR+VE+VFR

Normal

model

Average

12 datasets 12.7 6.8 11.8 6.1 6.1 5.4 5.2

-21% vs

normal

vs

normal

vs

CFR-only

vs

CFR-only

vs CFR-only

(vs normal)

-58% -47% -7% -10% -10% -21% (-58%)

Prepandemic 
2000-2019 

 [%]Efit

Improvement

by relative

 reductionE

Pandemic subperiod error  [%] 
for Various Models fitted to entire period 2000-2023

E2020−2023
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Figure 25: Pandemic all-age results for 10-EU datasets. The model fails to explain the first wave in 
France and Sweden (FR and SE), as their covid test data does not represent the wave well. 

 of 46 58  





Figure 26: Age-stratified results for the pandemic in 4-NL datasets. 

Figure 27 shows FR and SE results where the 1st half of 2020 is excluded from the model fit. 
Native weekly fit errors are now at the same level as prepandemic fit errors (FR 3.7%, SE 4.5%, 
see Table 6).




Figure 27: Pandemic results for datasets FR and SE, excluding the 1st half of 2020 in the model fit. 

Table 12 shows results for pandemic nonlinear parameters. The  is an average over all 
campaigns weighted by number of doses. The s (or ) are not shown as they are 
irrelevant on their own, as are test cases . Only combined as , they gain relevance, and 
together with  they relate to lifetime.

	 Not unexpectedly given the low quality of pandemic determinants, accuracy of several 
parameters is very low and far from ideal. This holds especially for FPD time scales, which are 
used to determine lifetime lost/saved. Also, several parameters vary considerably across 

μVFR

CFR μCFR

C CFR ⋅ C
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datasets. This may reflect some real differences among populations, but also insufficiencies in 
both source data and my brute-force optimization algorithm.


Table 12: Pandemic nonlinear parameters by  and/or 95% (CI), >CLB or <CUB. Statistics 
over all datasets are computed over  only. *) FR and SE have unreliable covid test data in the 1st 
half of 2020, this half year was excluded from their analysis. FR and IT have time-limited 
prepandemic data. 

Despite low accuracies, several inter-dataset average results match well with other existing 
findings:


Data

set

Mortality 
Natural 

Variability
Covid Mortality Vaccine Effectivity 

against covid mortality
Vaccine-dose Mortality 

fatal adverse events

NL 
0-65

2.8±0.3

(2.3-3.3)

1.4±0.3

(1.1-3.6) >48 100 >22 >15 >40 >120 .05±.02


(.02-.09)

NL 
65-80

3.4±0.1

(3.2-3.6)

1.8±0.2

(1.4-2.2)

20±4

(13-30) >58 0 >23 36±15


(12-75) >44 .13±.04

(.06-.22)

NL 
80+

5.6±0.1

(5.4-5.9)

2.5±0.3

(2.0-3.3)

10±2

(7.1-14) 100 11±0.7


(10-13)
9.2±2.1

(5.3-13)

4.9±2.6

(1.8-13) >16 .32±.11


(.20-62)

NL 
ALL

4.2±0.1

(4.0-4.4)

1.8±0.2

(1.5-2.2)

23±4

(16-33) 100 16±0.6


(15-17)
21±8

(13-37)

15±6

(8-33) >100 .09±.02


(.06-.15)

BE 5.4±0.1

(5.1-5.7)

2.9±0.2

(2.5-3.3)

42±6

(32-58) 100 9.8±1.5


(7-13)
5.3±1.4

(3.2-9.0)

12±6

(6-30) >81 .07±.02


(.04-.10)

BG 5.4±0.1

(5.2-5.6)

3.1±0.3

(2.6-3.7)

47±15

(26-88) 100 >3.7 >2.6 39±24


(25-82) >240 2.8±0.4

(2.3-4.0)

DE 4.3±0.1

(4.1-4.5)

5.1±0.6

(3.9-6.1)

6.7±0.8

(5.5-8.9) 100 15±0.8


(14-17) >92 >63 >120 .22±.07

(.12-.41)

ES 5.1±0.1

(4.9-5.4)

1.7±0.1

(1.5-1.9)

74±18

(49-120) 100 19±3


(13-22) >15 >9 >190 .13±.06

(.08-.33)

FI 4.3±0.1

(4.0-4.6)

9.0±1.4

(6.6-12)

12±2.3

(9-17) >38 0 45±7


(33-55) >350 >480 .38±.09

(.19-.55)

FR* 3.6±0.1

(3.4-3.9)

6.9±1.8

(4.0-10)

23±11

(11-52) >50 0 55±11


(38-81)
5.3±2.1

(2.2-10) 6-760 .03±.01


(.01-.06)

IT* 4.8±0.1

(4.6-5.1)

1.3±0.1

(1.1-1.5) >350 >45 <8 4.3±2.2


(1-9)
2.7±1.3


(1-6) >8 .07±.01

(.06-.09)

NL 4.2±0.1

(4.1-4.4)

1.9±0.2

(1.6-2.3)

22±3

(16-30) 100 16±0.6


(15-17)
14±3

(10-23)

15±6

(8-36) >73 .10±.03


(.07-.18)

PL 4.7±0.1

(4.6-5.0)

1.9±0.1

(1.7-2.2) >360 >3 (0-1) (1-13) 12±5


(6-23) >75 .09±.01

(.06-.11)

SE* 3.7±0.1

(3.9-4.3)

5.8±0.6

(4.8-7.0)

7.7±0.9

(6.4-9.8) 100 26±2


(21-29)
37±5

(29-45) >2 >130 .03±.01


(.01-.04)

All

sets 4.4±0.8 3.4±2.4 26±20 100 13±8 24±19 16±13 - 0.3±0.7

Without outlier BG: 0.13±.11



[w] 
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[%]  
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[%]
μVFR 
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• Covid mortality occurs quickly after a positive test, with  ≈ 3w


• Lifetime lost per person dying from covid is  ≈ 26w, ca. half of temperature’s 

• Vaccine effectivity starts at ca. 100%, remains so for ca. 13w, wanes in ca. 24w


• Fatalities can occur many months after vaccination, by  ≈ 16w, and a year for 0-65


• Lifetime lost per person dying from the vaccine, , ranges from years to decades


• Vaccine-dose fatality rates  are ca. 0.13% (all-age, ignoring outlier BG), and rise with age


Time to death after a positive covid test is found as ca. 3 weeks without any clear age 
dependance given the 4-NL results. This is in line with the 18 days regardless of age reported in 
[Mar2].

	 The fact that  is ca. half that of temperature’s , means that covid targets people  
more frail than those targeted by natural causes represented by temperature. These people are 
not just nearing their natural end of life; they are the lucky few that managed to live beyond their 
natural end by surviving the previous seasonal cycle. These findings resonate with reported ages 
at death in The Netherlands [Cbs5], which was ca. 82 year for deaths by covid (averaged over 
males/females and suspected/sure covid cases) and ca. 79 year for all-cause-mortality (estimated 
from 10-year cohorts). 
	 The high  and fast waning are in line with many studies in vaccine effectivity against covid 
mortality, e.g. [Riv3].

	 The  is considerably higher than temperature’s , up to many years. Vaccine fatal 

adverse events thus target much healthier people than natural causes do. The mean time  
between dose and fatality (if any), is ca. 16 weeks (all-ages, all datasets), but rises for younger 
people to ca. >40 weeks (ages 0-65).

	 The ’s found here of ca. 0.3% over all datasets, or 0.13% without outlier BG, are 
comparable to those found in my earlier study [Red3] which are 0.13%±0.04% (0.05-0.21%) in NL 
and 0.35%±0.10% (0.15-0.55%) in EU (both refer only to campaigns in 2022). This study used a 
very different approach based on explicit causal modeling of weekly differential mortality and 
vaccine uptake, also taking into account positive tests as a confounder.

	 For all-ages, the found ’s are of the same order as covid IFR [Axf,Ghi,Pez]. With  at 
near 100%, the vaccine’s net effect on all-cause-mortality would be low, in line with findings in 
[Ben]. The net effect of covid vaccinations appears to be a change in cause-of-death, from covid 
to whatever the fatal adverse event manifests as (heart attack, stroke, “natural death”, etc).

	 Table 13 shows derived lifetime lost/saved by covid and vaccines. Similar to pandemic 
parameters, accuracy is low. For every dataset, covid costs and vaccination saves considerable 
lifetime. Also, for every dataset a substantial amount of lifetime is lost by vaccinations. By order of 
magnitude, the losses match the savings. If vaccines are safe and fatal adverse events are rare, 
one expects  to be zero, or at least very low.

	 As explained in the pandemic model section, my model enforces non-negativity on  and 

 parameters by a zero-lower-bound, thereby biasing the average of zero-mean random 
fluctuations into a positive net value. I have repeated the entire analysis without zero-lower-
bound, allowing any real value for  and , including negative. This result is shown in 
Table 13 in grey. While non-physical (both some  and  actually become negative), the 
result is free from this positive bias; and it is essentially still the same.


τHPA;C

τFPD;C τFPD

τHPA;V

τFPD;V

μVFR

τFPD;C τFPD

VE0
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Table 13: Lifetime lost/saved in kiloyears, by 95% CI or CLB. *) FR and SE have unreliable covid 
test data in the 1st half of 2020. This half year was excluded from their analysis, so their covid 
mortality does not include the 1st wave. FR and IT have time-limited prepandemic data. 

4 Discussion 
Study limitations: As a new and different approach to mortality modeling, my examination could 
not possibly cover all aspects thoroughly; preliminary results were used on many occasions.	 

	 My model uses only population-aggregated data and no individual data, due to data availability 
to independent researchers. A limitation on results but a strength in terms of data requirements. 

	 For all-age populations, absolute mortality performs as good as population-relative mortality, 
thereby circumventing the need for population data. Still, applying the model on population-
relative data will per definition provide better results when used with highly-stratified datasets (e.g. 
5 year age bins at weekly time resolution), but such datasets are not (publicly) available.

	 I used data of only ten countries; starting with 4 datasets I added more during the work to 
avoid data exhaustion, but more datasets are needed. Given the conclusions for the young and 
healthy, more experiments with age-stratified datasets are certainly justified.

	 Several experiments with determinants alternative or additional to temperature did not make it 
into this report, as results where too inconclusive. These determinants include other weather 
features (absolute humidity, indoor and outdoor relative humidity, precipitation, sunlight), an 
optimism/pessimism indicator (AEX stock index [Fdb]), and a datafree determinant (fixed sine 
wave) as also used in the recently renewed Dutch baseline [Riv1]. Here, I would like to mention a 
few preliminary results that may incentivise follow-up research. The AEX determinant performed 
nearly as bad as a random-number determinant. Several of the other weather features performed 
similar to temperature or even better, but this was only tested on NL datasets as my EU datasets 
lacked determinant data. The datafree sine determinant outperformed temperature on 4 NL 

Dataset

Covid Mortality Vaccine Effectivity 
against covid mortality

Vaccine-dose 
Mortality 

fatal adverse events
no


zero

lower

bound

NL 0-65 1-52 >18 13-94 52-120

NL 65-80 4-7 6-290 16-65 22-100

NL 80+ 5-9 10-43 5-34 2-20

NL ALL 14-28 33-120 50-500 100-620

BE 24-40 13-34 20-290 27-390

BG 48-140 2-100 420-1400 1-610

DE 36-50 2800-5000 450-4600 570-2300

ES 150-360 370-9700 470-1900 840-4100

FI 3-8 14-42 670-2800 220-1400

FR* 68-140* 150-470 7-600 > 8400

IT* 1100-3800 1-1400 180-1500 150-1400

NL 15-25 30-78 50-400 41-320

PL 1000-3100 1-150 67-1100 97-1800

SE* 5.2-7.6* 29-100 3-120 210-750

Lifetime saved by 
vaccine  [ky]LTSV

Lifetime lost to

vaccine  [ky]LTLV

Lifetime lost to covid 
 [ky]LTLC
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datasets, but underperformed on 8 EU datasets. Further, systematic delay between several 
determinants and mortality was measured, i.e. “system dead-time” where health pressure does 
not yet lead to any effect on mortality at all. For temperature, half a week of delay was measured, 
but this was not taken into account in the proposed model. An advantage specifically for the sine 
determinant is that the delay can be represented by additional linear parameters (via cosine 
terms), where all other determinants need an explicit non-linear parameter. Unexpectedly, 
incorporation of the delay in the model increased prediction errors for several determinants.

	 The higher-than-expected variability of mortality [Red4] is still not explained by my model, 
using temperature or any of the other determinants mentioned above. The mystery of nationwise 
correlation among deaths remains interesting as it may relate to an important end-of-life process 
we are currently unaware of. If this process is identified (assuming it can be), it will probably not 
only explain mortality’s variability but also provide more accurate predictions. Given that the 
variability has been present for decades, new potential causes can be ruled out (e.g. 5G 
radiation).

	 There are quite some options to explore further, namely everything shared by many people 
over many decades: air, food, water, cosmic radiation, yet other weather aspects as UV light 
exposure, weekly optimism/pessimism inflicted on people via mass-media, etc. Maybe brightness 
and/or emotion levels of TV-shows watched by frail elderly have strong effects in the final days of 
life. Maybe health care workers’ behaviour is synchronized by traffic intensities and daily prices of 
electricity or medicines. Maybe some randomness is implicitly injected into death registrations, 
e.g. for privacy purposes. And quite possibly, temperature is the main driver after all and my 
model is just not capturing it well.

	 My linear FPD model is a simplification of the canonical mortality model, which is a 
simplification of reality. A first upgrade to FPD would be to use the canonical model, where the 
frail pool is not uniform but has several subpools binned by frail age, that is, stratified by health. 
This supports other health pressure interactions that are more deterministic, e.g. “this event kills 
every frail person with health level 16% or lower”. This leads to a variable FPD time depending on 
health pressure strength and duration, and presumably better results. Model optimization, 
however, will require more brute force computing and exclude the use of linear regression.

	 There are many tiny details that affect results. In data preparation, I did not use population 
density to weigh temperature readings from different weather stations. I used only quadratic 
health pressures by temperature, but other functions may be more suitable as a 3rd degree 
polynomial clearly showed promise. In the pandemic model I averaged the first two vaccine doses 
into a single “full” dose, but one could also use the original two doses plus a more realistic 
protection saturation model. The hidden universe [Bre] offers infinitely many such alternative 
model options, and I tried almost none of them.


VE biases and FPD: In at least three areas of VE measurements, the concepts of FPD and frail 
age may turn out useful. First, a generic weakness in common VE analyses is that lives-saved are 
reported rather than lifetime-saved. The former has meaning only for as far as it reflects the latter, 
and in FPD they are related by a single, measurable constant. 

Secondly, FPD may assist in the quantification of the so-called healthy vaccinee effect (HVE) 
[Høe]. This effect is caused by the sensible policy to exclude people from vaccination when they 
are deemed to frail to survive the vaccine’s health pressure. This biases natural deaths 
systematically towards unvaccinated status, which on its turn biases apparent VE against all-
cause-mortality (VE-ACM) optimistically if the policy is not compensated for. In a simplified HVE 
model, the policy effectively excludes people within N weeks from natural death. The  
defined in this report is a related property of vaccination for which N acts as a lower bound, which 
for ages 65+ in The Netherlands is roughly >35 weeks. For ease of argument, if one simplistically 
assumes N = 35 and all eligible 65+ people get vaccinated, then all natural deaths in the next 8 

τFPD;V
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months are unvaccinated. This results in a very high apparent VE regardless of any true vaccine 
effect for 8 months.

	 Thirdly, another bias that relates to HVE and thus to FPD, is what I adopt as vaccine-death 
mislabeling (VDM). It builds on the common malpractice of intentionally mislabeling people as 
being unvaccinated for 2-4 weeks after being vaccinated [Cbs6]. Table 14 shows a simplified 
representation of the mislabeling, which is typically assisted by different and complex vaccination 
status definitions per report, per institute, per country, per vaccine brand, etc. The table also 
shows a proposal for nomenclature disambiguation, where the bar means “non” and the dot 
means “recently”.


Table 14: Current medical practice of intentionally mislabeling people that received a vaccine dose.	   

Undisputedly, the immune system needs some weeks to respond to the vaccine’s health pressure. 
While this justifies the intention to take that time into account in VE assessment, it does not justify 
the means chosen of mislabeling. If a vaccine-death occurs within the mislabeling period, VDM 
labels that death as unvaccinated: the more deaths, the higher VE-ACM.

	 VDM relates to HVE and FPD via the small but everpresent group of very frail people balancing 
on the edge of the exclusion policy. Inevitably, a certain part will get vaccinated and die quickly as 
a result, labeled as recently-jabbed and thus unvaccinated. In a campaign, the frailest are 
vaccinated first, who are most susceptible to VDM; this biases VE-ACM mostly in the first month.

	 The bias investigated in [Nei2] relates also to the recently-jabbed, but not to FPD. It is based 
on natural death mislabeling (NDM): recently-jabbed people  are assigned vaccinated status  
when they live but unvaccinated  when they die, from whatever cause. NDM differs from VDM in 
that it does not depend on vaccine action; it turns even a placebo into effectiveness. NDM biases 
VE-ACM for as long as the campaign runs, creating the perceived need for an endless stream of 
booster campaigns. NDM operates similar in all age categories.

	 While beyond the scope of this report, the new nomenclature may help describe intricacies in 

 biases in a simple and explicit way:


	 (27)


	 Total number of deaths among the jabbed during some period 


	 Average number of jabbed people during 

	 (and similar for other jab/vaccine statuses,  small so average  has few variance)


The above shows the absurd assymetry of NDM, where 2 of the ’s are biased. The equation for 
VDM is more complex involving 3 biased ’s and not shown here.


Pandemic analysis: The results of my pandemic model have substantial inter-dataset 
variability and wide confidence intervals of parameter values. Determinants are of low data quality 

People that Currently labelled as Formerly known as Proposed new label

never received a jab

received a jab

received a jab < 2-4w ago

received a jab > 2-4w ago

Recently-jabbed ·J

Non-jabbed J̄

Vaccinated V

Jabbed JAmbiguous  & V̄ V

Vaccinated V

Unvaccinated V̄

Unvaccinated 	V̄

Nonrecently-jabbed ·̄J

Vaccinated V

·J V
V̄

VE

VETRUE = 1 −
N†J / NJ

N†J̄ / NJ̄
VEBIASED = 1 −

N†V / NV

N†V̄ / NV̄
VENDM = 1 −

N†J− ·J / NJ

N†J̄+ ·J / NJ̄

N†J P
NJ P

P NJ

N
N

 of 52 58  



for various reasons, which seems not easy to improve on. NPI stringency indices were not 
included.

	 My proprietary brute-force optimization and sampling algorithms are far from perfect, and may 
have found local sub-optima, or failed to measure parameter inaccuracies well. Similar issues may 
play a role as well in other studies that use default techniques. Default is not the same as free-of-
issues; it often just means free of discussion. Cox Proportional Hazard (CPH) models are widely 
used for VE analysis. The model’s inventor (sir Cox) was openly critical about its use in biology 
and preferred Accelerated Failure Time models [Wik]. From [Wik]: “There is strong basic science 
that … AFT models are the correct model for biological survival processes”. I am unfamiliar with 
AFT models but my model’s frailty and HPA ingredients seem related.

	 My pandemic results need to be taken with care and require more research. Like all science, 
medical in particular [Bre,Ioa]. In this context, Dutch national institutes used CPH models to claim 
the primary vaccination campaign had VE-ACM up to 50-75% in all age categories [Cbs1], see 
Figure 28. Notice the bump in the first month, and the sharp decline after 8 months at ages 65+; 
these findings probably suffer from one or more VE biases.




Time-since-full-vaccination (10 months total)


Figure 28: Vaccine effectiveness in % against all-cause-mortality in The Netherlands for the 
primary vaccination in 2021, source [Cbs1].


If above VE’s bare any relation with reality, one would expect that my results would show at least 
something remotely similar. Each of my four studies ([Red1,Red2,Red3] and the current, covering 
very different model approaches) finds the opposite: more vaccinations mean more mortality. The 
only similarity with Figure 28 is located at the end.

	 The finding of positive lifetimes lost to vaccination , is so disturbing that I have examined 
possible biases in my model. I identified one and have temporally removed it, resulting in a model 
that is non-physical, without bias, and essentially the same outcome. So many differences among 
countries, age groups, long-term trends, covid waves, campaign periods, random fluctuations; 
still, all  are positive and of similar order as . I find it hard to believe that these results 
are so consistent over all datasets just by happenstance.


5 Conclusions 
Objective: Present a model for mortality prediction dedicated to more objective quantification and 
localization in time of excess mortality. Secondary objective is to analyse the role of covid and 
vaccines in recent pandemic excesses. 

Method: The new model is designed following rules of simplicity, explicitness and source data 
reliability. The entire model is just one equation, M  = W*atT, with 12 parameters representing 
trends over decades, seasonal/weekly variability, health pressure accumulation (HPA) relating to 
delay between cause and death, frail pool dynamics (FPD) relating to the delay between excess 
and subsequent deficit which on its turn determines lifetime lost/saved (LTL/LTS), and the natural 
variability (NV) of remaining random mortality fluctuations.

  Normal and excess mortality are explicitly defined in a generic, non-mechanistic way. Input 
source data is weekly mortality and outside temperature, both of which are objective, reliable and 
available worldwide. Only aggregated absolute mortality numbers are required, but population-
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LTLV LTSV

 of 53 58  



relative numbers can be used as well. FPD redistributes mortality uncertainties towards births, 
away from deaths in an age-independent manner using the concept of “Frail Age”. LTL/LTS is 
more relevant than lives lost/saved which is zero-sum per definition on the long term. NV is 
modeled to match reported observations and differs from the often-used Poisson model.

	 Bayesian probabilistics and brute-force numerical optimization are used to fit the model. A 
simpler 9-parameter model is provided that requires only default linear regression. Prediction 
accuracy is explicitly defined and parametrized.

	 Additional determinants can be integrated into the model, to measure their relation to observed 
excesses. Pandemic excesses are examined via determinants of positive covid tests and 
vaccination doses administered. Measured parameters are covid Case Fatality Rate (CFR), 
Vaccine-dose Fatality Rate (VFR), Vaccine Effecivity (VE) against covid mortality, and LTL/LTS by 
covid and vaccination.


Experiments: Results with 10 EU countries (344M people) yield a prepandemic model fit over 
2000-2019 with accuracies relative to average mortality of ca. 1%, 4% and 5% at resp. yearly, 
monthly and weekly resolution. HPA and FPD times vary over countries and age. For the 
Netherlands (NL), HPA time (heat/cold stress to death) is found as 4.5 weeks (w) with 95% 
confidence interval (4.0-5.0w), and FPD time (between excess and deficit, LTL per death) as 44w 
(33-65w), matching theoretical expectations based on a recent finding that frail lifetime is ca. 4±1 
years. Prediction accuracy is measured ranging from ca. 1 to 3x the model fit accuracy, 
depending on prediction scheme (interpolation/extrapolaton, weekly/yearly resolution, distance 
between fit and prediction).


Pandemic predictions for 2020-2023 based on prepandemic mortality have error variance ca. 5 
times lower than the Dutch national baseline (79% reduction). Highest excess is found in Bulgaria 
(10σ) and Poland (12σ), while Germany (DE) and The Netherlands (NL) show no significant excess 
in any pandemic winteryear. For ages 0-65 in NL, substantial excess is found starting from 
winteryear 2020/21, peaking in 2021 (5σ) and enduring still. FPD predicts mortality deficits in the 
frail to follow and match excesses within a year, but none are observed in any country or age 
group. This suggests the pandemic health pressure has been fully persisting throughout 
2020-2023, and is significantly affecting the young and healthy.

	 Pandemic determinants are far less reliable/accurate than temperature, limiting pandemic 
measurements’ accuracy. Covid HPA time is found at ca. 3±2w over all countries, and 1.8w 
(1.5-2.2w) for NL, matching known mean times between positive test and death. Covid FPD time 
is ca. 26±20w for all countries, 23w (16-33w) for NL, ca. half of temperature’s FPD time. This 
suggests covid targets people more frail than natural mortality causes do, in line with findings of 
higher average age at death by covid compared to all-cause-mortality.

	 VE against covid mortality is found at ca. 100% initially, and wanes very fast in months to a 
year, matching existing studies. VFR is 0.13±0.1% death/dose for all countries, 0.09% 
(0.06-0.15%) for NL and  0.22% (0.12-0.41%) for DE. Vaccine HPA time between dose and death 
ranges from months to a year. Vaccine’s FPD time was measured an order above temperature’s,  
ranging from years to decades. This suggests vaccine fatal adverse events target much healther 
people than natural mortality causes do.

	 In all 10 countries examined, measured LTL and LTS have low accuracy and wide 95% CIs. 
Still, results suggest vaccines are responsible for a loss of lifeyears comparable to lifeyears saved. 
LTL by vaccinations in DE is 450-4600ky (kiloyear) and in NL 50-500ky for all-ages. Age-stratified 
NL results are 13-94ky (ages 0-65), 16-65ky (ages 65-80) and 5-34ky (ages 80+).

	 Conclusions: The proposed mortality model is simple, uses objective observations of mortality 
and temperature, fits and predicts mortality over decades, and outperforms the Dutch national 
baseline by a 79% prediction error variance reduction. Additional mortality determinants can be 
easily integrated. While pandemic determinants’ low reliability limits model accuracy, several 
results are significant and in line with other recent findings. Vaccine’s fatal adverse events appear 
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to target much healthier people than natural causes do, while covid targets people much frailer. 
Lifetime lost due to fatal adverse events is of the same order as lifetime saved by vaccines.


Message: The proposed model is very different from the state of the art and many options for 
further research are outlined. It has all kinds of flaws unknown to me, to all [Bre]. In its current 
simple form, the temperature-based model is very promising for generic mortality prediction. The 
pandemic model provides extremely disturbing findings on the mortal effect of covid vaccination 
campaigns in the young and healthy population that warrant more research in vaccine safety.
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*) ad [Riv1], translated from Dutch:

Every year in the first week of July, the RIVM calculates the expected mortality for the coming year. 
For this we use the mortality figures of the past five years. To avoid distortion of expected 
mortality, we do not include previous peaks. These peaks often coincide with cold and heat 
waves or outbreaks of infectious diseases. This concerns the 25% highest mortality rates over 
the past five years and the 20% highest mortality rates in July and August. The calculation uses a 
linear regression model with a linear time trend and sine/cosine terms to describe possible 
seasonal fluctuations.


*) ad [Cbs6], translated from Dutch:

Vaccination status 'vaccinated' is defined as 'fully vaccinated' (i.e. two weeks after two 
approved vaccinations, or a positive test at least 56 days before at least one approved 
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vaccination, or four weeks after vaccination where one vaccination counts as fully vaccinated 
according to the vaccination certificate, or when a booster or repeat injection has been given 
without a known basic series) possible with boosters and repeat injections. Vaccination status 
'unvaccinated' is defined as no known vaccination or only one known vaccination without 
previously reported infection (with the exception of the vaccine where one vaccination counted as 
fully vaccinated).
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